
VXI Technology VT2216A
VXI/SCSI Interface Module

User’s Guide
Part Number 82-0072-000

Printed in U.S.A.
Print Date: July 30, 2004

© Copyright VXI Technology, 2004. All rights reserved.
2031 Main Street, Irvine, CA 92614-6509 U.S.A.

Notices
The information contained in this manual is subject to change without notice. VXI Technology
makes no warranty of any kind with regard to this manual, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. VXI Technology shall
not be liable for errors contained herein or direct, indirect, special, incidental, or consequential
damages in connection with the furnishing, performance or use of the material.

Trademarks

Window®, Windows NT®, Windows 2000®, and MS-DOS® are U.S. registered trademarks of
Microsoft Corporation.

Netscape is a U.S. trademark of Netscape Communications Corporation.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227- 7013.

VXI Technology, Inc.
2031 Main Street

Irvine, CA 92614-6509, USA

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright © 2004 VXI Technology, Inc.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced,
or translated to another language without the prior written consent of VXI Technology, Inc.
2

Safety Summary
The following general safety precautions must be observed during all phases of operation of this
instrument. Failure to comply with these precautions or with specific warnings elsewhere in this
manual violates safety standards of design, manufacture and intended use of the instrument.
VXI Technology, Inc. assumes no liability for the customer's failure to comply with these
requirements.

GENERAL

This product is a Safety Class 1 instrument (provided with a protective earth terminal). The
protective features of this product may be impaired if it is used in a manner not specified in the
operation instructions.

All Light Emitting Diodes (LEDs) used in this product are Class 1 LEDs as per IEC 60825-1.

ENVIRONMENTAL CONDITIONS

This instrument is intended for indoor use in an installation category II, pollution degree 2
environment. It is designed to operate at a maximum relative humidity of 95% and at altitudes of
up to 2000 meters. Refer to the Technical Specifications document for the ac mains voltage
requirements and ambient operating temperature range.

BEFORE APPLYING POWER

Verify that the product is set to match the available line voltage, the correct fuse is installed and all
safety precautions are taken. Note the instrument's external markings described under Safety
Symbols.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cover must be connected to an electrical
protective earth ground. The instrument must be connected to the ac power mains through a
grounded power cable, with the ground wire firmly connected to an electrical ground (safety
ground) at the power outlet. Any interruption of the protective (grounding) conductor or
disconnection of the protective earth terminal will cause a potential shock hazard that could result
in personal injury.

FUSES

Only fuses with the required rated current, voltage, and specified type (normal blow, time delay,
etc.) should be used. Do not use repaired fuses or short-circuited fuse holders. To do so could
cause a shock or fire hazard.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes.
3

DO NOT REMOVE THE INSTRUMENT COVER

Operating personnel must not remove instrument covers. Component replacement and internal
adjustments must be made only by qualified service personnel.

Instruments that appear damaged or defective should be made inoperative and secured against
unintended operation until they can be repaired by qualified service personnel.

WARNING The WARNING sign denotes a hazard. It calls attention to a procedure, practice or the like,
which, if not correctly performed or adhered to, could result in personal injury. Do not
proceed beyond a WARNING sign until the indicated conditions are fully understood and
met.

Caution The CAUTION sign denotes a hazard. It calls attention to an operating procedure or the like,
which, if not correctly performed or adhered to, could result in damage to or destruction of part or
all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are
fully understood and met.
4

Safety Symbols

Warning, risk of electric shock

Warning, hot surface

Caution, refer to accompanying documents

Alternating current

Both direct and alternating current

Three-phase alternating current

Earth (ground) terminal

Protective earth (ground) terminal

Frame or chassis terminal

Terminal is at earth potential.
Used for measurement and control circuits designed to be operated with
one terminal at earth potential.

Terminal for Neutral conductor on permanently installed equipment.

Terminal for Line conductor on permanently installed equipment.

Standby (supply). Units with this symbol are not completely
disconnected from ac mains when this switch is off.
To completely disconnect the unit from ac mains, either disconnect the
power cord or have a qualified electrician install an external switch.
5

VT2216A at a Glance

The VT2216A VXI/SCSI Interface module is a high-speed dual SCSI interface with optional
internal disk drives. Option 1 adds a 73 GB drive and Option 2 adds two 73 GB drives. The
VT2216A is compatible with software written for the Agilent/HP E1562. However, its SCSI
electrical interface is not compatible with the Agilent/HP E1562.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the module’s
SCSI connectors. The VT2216A contains low-voltage differential LVD circuits that may be
damaged if connected to HVD circuits.

VXI Mainframe
6

In This Book

This book documents the VT2216A VXI/SCSI Interface module. It provides:

• Installation and service procedures (calibration not required)

• Operating information

• VXIplug&play command reference

• Sequence operations reference

• SCPI command reference

• LIF library reference
7

8

Contents
VT2216A at a Glance .6

In This Book .7

Installing the VT2216A .19
Installing the VT2216A .20
To Inspect the VT2216A .20
The VT2216A Checkist .21
To Install the VT2216A .22
To Install the VT2216A Software .25
To Transport the Module .27

To store the module. .27

Troubleshooting the VT2216A. .29
Introduction .30
To Troubleshoot the VT2216A .31

Replacing Assemblies .33
Replaceable Parts .34
To Remove the Top Cover .40
To Remove the Printed Circuit Assemblies .41
To Remove a Disk Drive .43
To Remove the Fan .44
To Remove the Front Panel .45
To Reprogram the Main Assembly .48
9

Contents
Hardware Description. 49
General Description .50
Circuit Description .52
VT2216A Front Panel Description. .55

Using the VT2216A . 57
VXI and SCPI. .58
The VXI Registers .59
Throughput Terminology .60
The VT2216A Throughput/Playback Process .67

VXIplug&play Reference . 75
What is VXIplug&play?. .76
The VXIplug&play Soft Front Panel .78
Using the VT2216A VXIplug&play Library .79

Recording from the VXI Local Bus .79
Playing Back Data from a Throughput File .81

Function Reference. .82
Alphabetical Function Reference .82
Hierarchical Function Reference. .84
agn2216_close. .86
agn2216_cmd .87
agn2216_cmd_query_int32. .88
agn2216_cmd_query_real64 .89
agn2216_cmd_query_string .90
agn2216_error_message .91
agn2216_error_query .92
agn2216_find. .93
agn2216_find_default_volume .94
agn2216_get_debuglevel. .95
agn2216_get_dir_entry .96
agn2216_get_first_dir_entry .98
agn2216_get_timeout .100
agn2216_init .101
agn2216_init_volume .103
agn2216_reset .104
10

Contents
agn2216_revision_query .105
agn2216_self_test .106
agn2216_set_debuglevel .108
agn2216_set_timeout .109
agn2216_tput_abort. .110
agn2216_tput_bytes .111
agn2216_tput_finished .112
agn2216_tput_playback_read_aint16 .113
agn2216_tput_playback_read_aint32 .114
agn2216_tput_playback_read_aint32_16 .115
agn2216_tput_playback_read_char. .116
agn2216_tput_reset_localbus .117
agn2216_tput_setup_playback .118
agn2216_tput_setup_record .119
agn2216_tput_start_playback .120
agn2216_tput_start_record .121
agn2216_tputfile_close .122
agn2216_tputfile_open_playback .123
agn2216_tputfile_open_record .124
agn2216_tputfile_open_update .125
agn2216_tputfile_read_aint16. .126
agn2216_tputfile_read_aint32. .127
agn2216_tputfile_read_areal64. .128
agn2216_tputfile_read_char .129
agn2216_tputfile_seek .130
agn2216_tputfile_write_aint16 .131
agn2216_tputfile_write_aint32 .132
agn2216_tputfile_write_areal64 .133
agn2216_tputfile_write_char .134

VXIplug&play Library Errors .135

Sequence Operations Reference .141
Sequence Overview .142
Sequence Quick Reference. .145
VT2216A Sequence Operations .150

Do Nothing .0000150
Terminate Sequence .0001151
Pause N msec .0002152
TTLTRG Control .0003153
11

Contents
Execute New Sequence .0004154
New Sequence If Count .0005155
TTLTRG Arm .0006156
TTLTRG Wait. .0007157
IRQ Arm .0008158
IRQ Wait .0009159
Test shared RAM and Skip .7000160
Pause N loops . 000a161
LBUS Consume .1000162
LBUS Eavesdrop .1001163
LBUS Consume Pipe .1002164
LBUS Eavesdrop Pipe. .1003165
LBUS Consume Continuous .1100166
LBUS Eavesdrop Continuous .1101167
LBUS Consume Pipe Continuous. .1102168
LBUS Eavesdrop Pipe Continuous .1103169
LBUS Generate .2000170
LBUS Append. .2001171
Throughput A16 Buff 16 -
Throughput Shared RAM . 3000-3012172
Throughput Dummy Bytes .3100173
Throughput Shared RAM Monitor Shared RAM -
Throughput A24 Buff D32 Monitor A24 Buff 3812-3a05174
Playback A16 Buff 16 -
Playback Shared RAM . 4000-4012175
Playback Bit Bucket .4100176
LBUS Consume Monitor Shared RAM -
LBUS Eavesdrop Pipe Monitor A24. 5000-5017177
Wait Bit Set A16 -
Wait Bit Clear Shared RAM . 6000-6007179
Wait A16 Count16 -
Wait Count Shared RAM 32 . 6008-600f180
Wait FIFO Empty
Wait FIFO Half Empty . 6010-6011181
Control A16 Reg 16 -
Control Reg Shared RAM 32 . 6018-601f182
Dump A24 Seq Bytes -
Dump Shared RAM Seq Bytes . 6020-6022183
12

Contents
Programming Using SCPI .185
Getting Started .186
Using the Status Registers .188
The VT2216A Registers Sets .192
Addressing the VT2216A. .198

SCPI Command Reference .199
Message-based VXI devices. .200

Finding the Right Command. .201
Command Syntax .202

VT2216A SCPI Quick Reference .204
VT2216A SCPI Commands .207

*CLS . command207
*ESE .command/query208
*ESR? . query209
*IDN? . query210
*OPC .command/query211
 *RST . command212
*SRE .command/query213
*STB? . query214
*TST? . query215
*WAI. command216
DIAGnostic:BOARd:MAIN? . query217
DIAGnostic:BOARd:SCSI? . query218
DIAGnostic:LBUS:CONSume? . query219
DIAGnostic:LBUS:GENerate? . query220
DIAGnostic:SCSI:DAT?. query221
DIAGnostic:SCSI:DEVices? . query222
DIAGnostic:SCSI:DISK? . query223
LBUS:READ:BUFFer . command224
LBUS:WRITe:BUFFer . command225
MMEMory:SCSI[1|2|...|30]:BSIZe? . query226
MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO command/query227
MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate]. command229
MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? query230
MMEMory:SCSI[1|2|...|30]:CAPacity? query231
MMEMory:SCSI[1|2|...|30]:CLOSe command232
MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe] . . .command/query233
13

Contents
MMEMory:SCSI[1|2|...|30]:ERASe command234
MMEMory:SCSI[1|2|...|30]:OPENcommand/query235
MMEMory:SCSI[1|2|...|30]:TEMPerature? query237
MMEMory:SESSion[1|2|...|12]:ADD command238
MMEMory:SESSion[1|2|...|12]:COPY command239
MMEMory:SESSion[1|2|...|12]:DELete:ALL. command240
MMEMory:SESSion[1|2|...|12]:READ:BUFFer. command241
MMEMory:SESSion[1|2|...|12]:READ:FIFO command242
MMEMory:SESSion[1|2|...|12]:SEEK command243
MMEMory:SESSion[1|2|...|12]:SIZE? query244
MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer command245
MMEMory:SESSion[1|2|...|12]:WRITe:FIFO command246
MMEMory:TUNit[1|2|...|15]:CLOSe command247
MMEMory:TUNit[1|2|...|15]:OPENcommand/query248
SEQuence[1|2|3|4]:ADD . command249
SEQuence[1|2|3|4]:BEGin. command250
SEQuence[1|2|3|4]:DELete:ALL . command251
SEQuence[1|2|3|4]:SIZE? . query252
SEQuence[1|2|3|4]:TRANsferred? . query253
STATus:OPERation:CONDition? . query254
STATus:OPERation:ENABlecommand/query255
STATus:OPERation[:EVENt]?. query256
STATus:OPERation:NTRansition command/query257
STATus:OPERation:PTRansition.command/query258
STATus:PRESet . command259
STATus:QUEStionable:CONDition? . query260
STATus:QUEStionable:ENABlecommand/query261
STATus:QUEStionable[:EVENt]? . query262
STATus:QUEStionable:NTRansitioncommand/query263
STATus:QUEStionable:PTRansitioncommand/query264
SYSTem:ABORt. command265
SYSTem:COMMunicate:SCSI[:SELF]:ADDRess. .command/query266
SYSTem:ERRor? . query267
 SYSTem:VERSion?. query268
VINStrument[:CONFigure]:LBUS
[:MODE] RESet|NORMal|PIPEcommand/query269
VINStrument:LBUS:RESet . command270

Errors .271
14

Contents
LIF Library Reference .277
Getting Started .278

LIF Library Quick Reference .280
VT2216A LIF Functions .282

e1562_allocated. .282
e1562_available. .283
e1562_block .284
e1562_copy .285
e1562_closeLibrary. .286
e1562_defaultVolume .287
e1562_dirFirst .288
e1562_dirInit .289
e1562_dirNext. .290
e1562_fclose .291
e1562_fflush .292
e1562_fgetpos .293
e1562_fopen .294
e1562_fread. .295
e1562_fsetpos .296
e1562_fwrite .297
e1562_initializeLibrary .298
e1562_mapModule .299
e1562_pack .300
e1562_remove .301
e1562_rename .302
e1562_setEOF .303

VT2216A LIF Commands .304
e1562cp .305
e1562in .306
e1562ls .307
e1562mv .308
e1562pk .309
e1562rm. .310

LIF Library Errors .311

Glossary .313

Index .319
15

Contents
16

Support Resources

Support resources for this product are available on the Internet and at VXI Technology customer
support centers.

VXI Technology
World Headquarters

VXI Technology, Inc.
2031 Main Street
Irvine, CA 92614-6509

Phone: (949) 955-1894
Fax: (949) 955-3041

VXI Technology
Cleveland Instrument Division

VXI Technology, Inc.
7525 Granger Road, Unit 7
Valley View, OH 44125

Phone: (216) 447-8950
Fax: (216) 447-8951

VXI Technology
Lake Stevens Instrument Division

VXI Technology, Inc.
1924 - 203 Bickford
Snohomish, WA 98290

Phone: (425) 212-2285
Fax: (425) 212-2289

Technical Support

Phone: (949) 955-1894
Fax: (949) 955-3041
E-mail: support@vxitech.com

Visit http://vxitech.com for worldwide support sites and service plan information.
Support 17

http://www.vxitech.com
mailto://support@vxitech.com

18 Support

Installing the VT2216A

Installing the VT2216A
Installing the VT2216A
Installing the VT2216A

This chapter contains instructions for installing the VT2216A VXI/SCSI Interface module and its
libraries. This chapter also includes instructions for transporting and storing the module.

To Inspect the VT2216A

The VT2216A VXI/SCSI Interface module was carefully inspected both mechanically and
electrically before shipment. It should be free of marks or scratches, and it should meet its
published specifications upon receipt.

Note The VT2216A does not require periodic calibration or performance testing.

If the module was damaged in transit, do the following:

• Save all packing materials.

• File a claim with the carrier.

• Call a VXI Technology sales and service office.
20

Installing the VT2216A
The VT2216A Checkist
The VT2216A Checkist

The following items are included with the VT2216A VXI/SCSI Interface module:

• One CD-ROM containing VXIplug&play libraries, LIF libraries, sample programs, a PDF file
of this book and online help (HTML files) for HP-UX 10.2, Windows NT 4.0 and
Windows 2000 and later. The HTML files require a web browser that supports the HTML
v3.2, JavaScript 1.2 and CSS1 standards, such as, Internet Explorer 4.0 or Netscape 4.0. In
addition, the web browser's cookie support should be turned on to receive the full
functionality of the online help.

• Two SCSI terminators (VXI Technology part number 1253-4010)

• VT2216A User’s Guide (this book)
21

Installing the VT2216A
To Install the VT2216A
To Install the VT2216A

If using the Agilent/HP E1406A Command module and an external computer with DOS based
windows, use the Agilent/HP VXI Installation Consultant (VIC) to install the VT2216A module.
VIC guides the user through the installation procedure, then tests the modules using the *TST?
command. VIC may time out before the test is finished and display a “timed out” message. If this
occurs, exit VIC and send the *TST? command. For instructions on sending the *TST?
command, see “Troubleshooting the VT2216A” starting on page 29.

Caution To protect circuits from static discharge, observe anti-static techniques whenever handling the
VT2216A VXI/SCSI Interface module.

1. Set up the VXI mainframe. See the mainframe’s installation guide.

2. Select two slots in the VXI mainframe for the VT2216A module.

The VT2216A module’s local bus receives ECL-level data from the module immediately to
its left and outputs ECL-level data to the module immediately to its right. Every module using
the local bus is keyed to prevent two modules from fitting next to each other unless they are
compatible. If using the local bus, select two slots directly adjacent to the left of the data-
receiving module.

3. Using a small screwdriver or similar tool, set the Logical address configuration switch on the
VT2216A.

Each module in the system must have a unique logical address. The factory default setting is
1001 0000 (144). If an Agilent/HP E1485 Signal Processor module will be controlling the
VT2216A module, select an address within the Agilent E1485 module’s servant area. If a
GPIB command module will be controlling the VT2216A module, select an address that is a
multiple of 8.

4. Using a small screwdriver or similar tool, set the Hardware configuration switches on the
VT2216A.

The factory default setting is 1111 1100.

Note Controller Address switches CA1 and CA0 set the SCSI Controller Address. SCSI Controller
Address 7 (the factory default setting) identifies the SCSI Bus Master. If using more than one
VT2216A on the same SCSI bus, set the Controller Address switches for the second VT2216A to
Address 4, 5, or 6.

5. Using a small screwdriver or similar tool, set the Internal SCSI device address switches on the
VT2216A.

The factory default setting is 0000 0000 (both disk drives at SCSI ID 0)
22

Installing the VT2216A
To Install the VT2216A
Logical Address

Hardware
Address

Internal Device
Address

1

0

1

0

0
1

23

Installing the VT2216A
To Install the VT2216A
6. Set the mainframe’s power switch to standby.

7. Place the module’s card edges (top and bottom) into the module guides in the slot.

8. With the extractor levers in the out position, slide the module into the mainframe until the
module connects firmly with the backplane connectors. Make sure the module slides in
straight.

9. Attach the module’s front panel to the mainframe chassis using the module’s captive
mounting screws.

10. If an external SCSI disk or DAT drives are not being connected, terminate the SCSI
connectors using the provided SCSI terminators.

11. If an external SCSI disk or DAT drives are being connecting, make sure they are low-voltage
differential devices (LVD) and that the end of the SCSI bus is terminated.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the module’s
SCSI connectors. The VT2216A contains LVD circuits that may be damaged if connected to
HVD circuits.

VXI Mainframe

Slotted
Captive Screws

Power
Switch
24

Installing the VT2216A
To Install the VT2216A Software
To Install the VT2216A Software

The VT2216A CD contains software for both MS Windows (Windows NT 4.0 and
Windows 2000 or later) and HP-UX 10.2.

Before installing the VT2216A software, read the readme.txt file on the CD for updated
information. On a PC, use Wordpad to read this and other readme.txt files.

Note The VT2216A is software compatible with the HP E1562. The VT2216A software does not need
to be installed for applications currently using the HP E1562.

Installing the VT2216A Software on Windows NT 4.0 or Windows 2000 and later

After installing the VISA library that comes with the VXI interface or the VXI embedded
computer, do the following:

1. Insert the VXIplug&play Instrument Drivers and Product Manuals CD-ROM into the
computer's CD-ROM drive.

2. Using Windows Explorer, select the CD-ROM drive. Navigate to \drivers\DAQ Drivers

3. Double-click the driver_vxipnp_n2216_a_01_00.exe file to begin the self-extracting
installation program.

4. Follow the instructions on the screen to install the software.

The VXIplug&play library, the LIF library, include files, soft front panel application, commands,
and other files are installed in the standard VXIplug&play directories in C:\Vxipnp\winnt
(bin, include, lib, agn2216) for a Windows XP system.

For a standard installation, other files are installed in the following C:\Program
Files\Agilent\N2216\ sub-directories:

The source files are provided as examples for using the VT2216A. The source directories contain
project files for use with Visual Studio 6.0 and makefiles for HP-UX. For more information see
the readme.txt in each directory.

e1562 source for programs using SICL written for the Agilent/HP E1562

e1562lif source for the LIF commands

examc source for diskdiag and other programs using VISA

help online help (HTML)

pnpexamc source for examples that use the VT2216A VXIplug&play library

pnplib source for the VT2216A VXIplug&play library

pnpsfp source for the soft front panel (Visual Basic 6)

pnpvee source for examples that are Agilent VEE compatible
25

Installing the VT2216A
To Install the VT2216A Software
Installing the VT2216A Software on HP-UX 10.2

After installing the VISA and/or SICL library that comes with the VXI interface or the VXI
embedded computer, do the following:

1. Log in as root.

2. Insert the VXIplug&play Instrument Drivers and Product Manuals into the computer’s CD-
ROM drive.

3. Mount the CD-ROM file system. Use an appropriate modification of:
mount /dev/dsk/c201d2s0 /cdrom
where c201d2s0 is the system file for the CD-ROM drive and /cdrom is the directory path
of the root of the CD-ROM’s file structure. (These names may differ from system to system.)

4. Type:
/usr/sbin/swinstall -s /cdrom/n2216a.tap

The installation program will proceed to install the software.

The VXIplug&play library, the LIF library (VISA version), include files, commands and other
files are installed in the standard VXIplug&play directories in /opt/vxipnp/hpux/ (bin,
include and agn2216). The SICL versions of the LIF library and LIF commands are installed
in /opt/e1562/ (bin, include, lib).

Other files are installed in /opt/agn2216/ sub-directories as described above.
26

Installing the VT2216A
To Transport the Module
To Transport the Module

• Package the module using the original factory packaging or packaging identical to the factory
packaging.

Containers and materials identical to those used in factory packaging are available through
VXI Technology.

• If returning the module to VXI Technology for service, attach a tag describing the following:

• Type of service required

• Return address

• Model number

• Full serial number

In any correspondence, refer to the module by model number and full serial number.

• Mark the container FRAGILE to ensure careful handling.

• If necessary to package the module in a container other than original packaging, observe the
following (use of other packaging is not recommended):

• Wrap the module in heavy paper or anti-static plastic.

• Protect the front panel with cardboard.

• Use a double-wall carton made of at least 350-pound test material.

• Cushion the module to prevent damage.

Caution Do not use styrene pellets in any shape as packing material for the module. The pellets do not
adequately cushion the module and do not prevent the module from shifting in the carton. In
addition, the pellets create static electricity that can damage electronic components.

To store the module

Store the module in a clean, dry, and static free environment.

For other requirements, see storage and transport restrictions in the VT2216A VXI/SCSI Interface
Module Technical Specifications.
27

Installing the VT2216A
To Transport the Module
28

Troubleshooting the VT2216A

Troubleshooting the VT2216A
Introduction
Introduction

The troubleshooting procedure in this chapter uses a program that automatically runs the
following commands from an MS-DOS® window:

• *IDN - identifies the module.

• *TST - checks the general operation of the Main assembly and SCSI assembly.

• DIAG:BOAR:MAIN - tests the Main assembly.

• DIAG:BOAR:SCSI - tests the SCSI assembly.

• DIAG:SCSI:DEV - checks the interface for a specific SCSI controller.

• DIAG:SCSI:DISK - checks the operation of a disk drive at the address specified.

For more information on these commands see “SCPI Command Reference” starting on page 199.
30

Troubleshooting the VT2216A
To Troubleshoot the VT2216A
To Troubleshoot the VT2216A

1. Type the following in an MS-DOS window then press enter:

diskdiag

2. A response similar to the following identifies the module:
diskdiag: running diagnostics for N2216 and E1562

Sending: *idn?
Received:
HEWLETT-PACKARD,N2216A (E1562E),US40200101,A.01.02

Note This response will vary with the revision and date of the firmware used. A VXI Technology
response will return a "VT" prefix (e.g. "VT2216A") while an HP response returns an "N" prefix
(e.g. "N2216"). Both are acceptible.

If the response is incorrect, use the resource manager to verify connection to the module. The
resource manager must be running before the test is started.

3. A response similar to the following indicates that the self test passed:

Sending: *tst?
Received:
+0

If the response is 1 through 11, the Main assembly is probably faulty.

If the response is 12 through 14, the SCSI assembly is probably faulty.

4. A response similar to the following indicates that the Main assembly test passed:

Sending: diag:boar:main?
Received:
"E1562 version ?2, logical address 144, bus request level 3
test_shared_ram: passed
Test magic shared ram read: passed
Test magic VXI a24 read: passed
Passed
"

If this test failed, the Main assembly is probably faulty. If the Main assembly is replaced, the
module’s serial number and model number must be reprogramed into Flash ROM. See “To
Reprogram the Main Assembly” on page 48.

5. A response similar to the following indicates that the SCSI assembly test passed:
Sending: diag:boar:scsi?
Received:
"Passed
"

If this test failed, the SCSI assembly is probably faulty.
31

Troubleshooting the VT2216A
To Troubleshoot the VT2216A
6. A response similar to the following identifies the SCSI address of the device (in this case 00)
followed by the type of device (in this case a Seagate disk drive):
Sending: diag:scsi:dev? a
Received:
"00:SEAGATE ST373307LW-0001"

Sending: diag:scsi:dev? b
Received:
"00:SEAGATE ST373307LW-0001"

If either response is incorrect, the fuse on the SCSI assembly, the internal SCSI cable or SCSI
device is probably faulty. Check fuses on the SCSI assembly (F600 and F650). Swap the
internal cables and retest. If the same connection fails, the disk drive is probably faulty. If the
other connection fails, the internal cable is probably faulty.

If both responses are incorrect, the Power Supply assembly is probably faulty.

7. For two optional disk drives⎯a response similar to the following indicates that the "A" disk
drive test passed:
Sending: diag:scsi:disk? a,0
Received:
"SCSI0 la00: device open -- blocksize=512 #blocks=97693755
SCSI0 la00: read serial number -- LQ2098310000102242TM
SCSI0 la00: read VPD page 81 -- unknown information
SCSI0 la00: read VPD page c0 -- 528000291679167000100010000000000000000000000000
SCSI0 la00: read VPD page c1 -- 21199052899
SCSI0 la00: read VPD page c2 -- unknown information
SCSI0 la00: read VPD page c3 -- unknown information
SCSI0 la00: read VPD page d1 -- unknown information
SCSI0 la00: read VPD page d2 -- unknown information
SCSI0 la00: Passed
"

If the test Failed, the disk drive assembly connected to the "A" connector is probably faulty.

8. For one or two optional disk drives⎯a response similar to the following indicates that the "B"
disk drive test passed:
Sending: diag:scsi:disk? b,0
Received:
"SCSI1 la00: device open -- blocksize=512 #blocks=97693755
SCSI1 la00: read serial number -- LQ075951000010121KK4
SCSI1 la00: read VPD page 81 -- unknown information
SCSI1 la00: read VPD page c0 -- 528000291679167000100010000000000000000000000000
SCSI1 la00: read VPD page c1 -- 20799052899
SCSI1 la00: read VPD page c2 -- unknown information
SCSI1 la00: read VPD page c3 -- unknown information
SCSI1 la00: read VPD page d1 -- unknown information
SCSI1 la00: read VPD page d2 -- unknown information
SCSI1 la00: Passed
"

If the test Failed, the disk drive assembly connected to the "B" connector is probably faulty.

Note For ordering and replacement procedures, see “Replacing Assemblies” starting on page 33.

The VT2216A does not require calibration.
32

Replacing Assemblies

Replacing Assemblies
Replaceable Parts
Replaceable Parts

Replacement parts are listed in the following tables:

• Assemblies

• Front panel

• Cables

Ordering Information

To order VXI Technology parts, please contact a local VXI Technology Service Center.

Replaceable Parts Table

The replaceable parts table contains the following columns:

• Ref Des = The reference designator allows for identificatoin of the part using the illustration
provided.

• VTI Part Number = The part number assigned by VXI Technology to the part.

• Qty = Total quantity in instrument.

• Description = Description of the part.

• Mfg Code = A code number that identifies a manufacturer of the part. See “CAGE Code
Numbers” for the manufacturer’s name and address.

• Mfg Part Num = The part number assigned by the manufacturer to the part.

Caution The module is static sensitive. Use the appropriate precautions when removing, handling and
installing to avoid unnecessary damage.
34

Replacing Assemblies
Replaceable Parts
CAGE Code Numbers

The following table provides the name and address for the manufacturers’ CAGE code numbers
(Mfr Code) listed in the replaceable parts tables.

Mfr No. Mfr Name Address
03LB1 VXI Technology, Inc. Irinve, CA 92614-6509 U.S.A.
00779 Tyco Electronics Corp. / AMP Products Middleton, PA 17057-3608 U.S.A.
05791 Lyn-Tron, Inc. Spokane, WA 99224-9406 U.S.A.
1QDV5 3M Corporation Austin, TX 78726-4530 U.S.A.
22670 GM Nameplate, Inc. Seattle, WA 98199-2728 U.S.A.
30817 Laird Technologies Delaware Water Gap, PA 18327-0000 U.S.A.
5U402 House of Metrics, Ltd. Spring Valley, NY 10977-4909 U.S.A.
63994 E-A-R Specialty Composite (Aearo Co.) Indianapolis, IN 46268-1650 U.S.A.
65867 Seagate Technology, Inc. Scotts Valley, CA 95066-4544 U.S.A.
86928 Seastrom Manufacturing Co. Twin Falls, ID 83301-8526 U.S.A.
92912 Bel Fuse, Inc. Jersey City, NJ 07302-44496 U.S.A.
93907 Textron Inc., Camcar Division Rockford, IL 61104-5159 U.S.A.
35

Replacing Assemblies
Replaceable Parts
Assemblies: VT2216

MP012

MP003

MP007

MP018

MP014
MP020

A20

A20
MP021

MP013MP018 A3
MP022

MP023

MP013
MP002

MP024
MP004

MP007

A12

A11

MP013

MP013

MP012

MP012

MP005

MP013

MP013

MP015

MP019

MP017
MP013

A4
36

Replacing Assemblies
Replaceable Parts
Table 1 Assemblies

Note If the Main assembly is replaced, the module’s serial number and model number must be
reprogramed into Flash ROM. See “To Reprogram the Main Assembly” on page 48.

Early VT2216A modules contain the N2216-66501 Main assembly. The N2216-66511 Main
assembly is the replacement assembly for the N2216-66501.

Ref
Des

VTI Part
Number

Qty Description Mfr
Code

Mfr Part Number

A3 N2216-66503 1 PC-ASSY DISK POWER SUPPLY 03LB1 N2216-66503
A4 N2216-66505 1 PC-ASSY LED 03LB1 N2216-66505
A11 N2216-66511 1 PC-ASSY MAIN 03LB1 N2216-66511
A12 N2216-66512 1 PC-ASSY SCSI INTERFACE 03LB1 N2216-66512
A20 0950-4201 2 OPTIONAL 73 GB DISK DRIVE 65867 ST373307LW-0001
MP002 N2216-00602 1 SHFT-MOD BASE N2216 03LB1 N2216-00602
MP003 41-0396-000 1 MODULE, COVER, (N2216-00601) 03LB1 41-0396-000
MP004 N2216-00105 1 SHTF; MNTG PLATE 03LB1 N2216-00105
MP005 N2216-04101 1 SHTF; COVER REAR 03LB1 N2216-04101
MP007 E1562-00102 2 SHTF; FAN MNT PLATE 03LB1 E1562-00102
MP012 0515-1946 8 SCREW-MACH M3 X 0.5 6MM-LG 90-DEG-FLH-HD 03LB1 0515-1946
MP013 0515-0372 21 SCREW-MACHINE ASSEMBLY M3 X 0.5 8MM-LG 03LB1 0515-0372
MP014 E1562-68501 1 FAN 03LB1 E1562-68501
MP015 8160-0686 1 RFI STRIP-FINGERS BE-CU SN-PL 30817 786-185
MP016 0380-2070 3 STANDOFF-HEX 14-MM-LG M3.0 X 0.5-THD 05791 SS5172-14.0-01
MP017 3050-1161 2 WASHER-SHLDR NO. 4 .115-IN-ID .24-IN-OD 86928 5607-150
MP018 0515-0430 5 SCREW-MACHINE ASSEMBLY M3 X 0.5 6MM-LG 03LB1 0515-0430
MP020 0380-4355 2 STANDOFF-HEX 40-MM-LG M3 X 0.5-THD 05791 SS5171-40.0-01
MP021 0460-1790 5 DRIVE CUSHION 22670
MP022 0380-4767 8 STANDOFF-HEX .250-IN-LG 6-32-THD 93907 SS6993-0.250-01
MP023 N2216-26001 8 SHLDR-SCREW 03LB1 N2216-26001
MP024 0400-0922 8 GROMMET-RND .158-IN-ID .057-IN-GRV-WD 63994 G-410-3
MP026 0515-0664 4 SCREW-MACHINE ASSEMBLY M3 X 0.5 12MM-LG 93907 0515-0664
MP027 0515-2733 4 SCREW-SPCL M2.5 X 0.45 17MM-LG PAN-HD 03LB1 0515-2733
MP028 0535-0031 2 NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK 5U402 0535-0031
MP029 0403-0285 2 BUMPER FOOT-ADH MTG 12.7-MM-WD 078Z1 SJ-5018 GRAY
A12F600 2110-0955 1 FUSE-SURFACE MOUNT 2A 125V NTD BI UL-LST 92912 SSQ2
A12F650 2110-0955 1 FUSE-SURFACE MOUNT 2A 125V NTD BI UL-LST 92912 SSQ2
37

Replacing Assemblies
Replaceable Parts
Front Panel

Table 2 Front Panel

MP201

MP207

MP209

MP210
&

MP215

MP212

MP208
&

MP214

MP213

MP211

MP205

MP206

MP211

Ref
Des

VTI Part
Number

Qty Description Mfr
Code

Mfr Part
Number

MP201 N2216-00201 1 FRONT PANEL 03LB1 N2216-00201
MP205 E1400-45101 1 MOLD KIT-BTTM EXTR HDL 03LB1 E1400-45101
MP206 E1400-45102 1 MOLD KIT-TOP EXTR HDL 03LB1 E1400-45102
MP207 1252-6155 4 SCREWLOCK FEMALE-SUBMIN D CONN 00779 786585-2
MP208 7121-7893 1 PLT-NAME,'SPARK' 03LB1 7121-7893
MP209 E1400-45008 2 MOLD BTTM-'VXI' 03LB1 E1400-45008
MP210 E1400-45011 2 MOLD TOP-'SPARK' 03LB1 E1400-45011
MP211 E1400-00610 2 SCR-ASM SHLDR 03LB1 E1400-00610
MP212 7121-7964 1 PLT-NAME VXI 'BUS' 03LB1 7121-7964
MP213 0515-2733 4 CAPTIVE SCREWS 03LB1 0515-2733
MP214 43-0016-003 2 LABEL, VXI EXT, 'VXI TECH', NEW LOGO 03LB1 43-0016-003
MP215 43-0016-002 2 LABEL, VXI EXT, 'VXIBUS' 03LB1 43-0016-002

E1400-40104 2 L-BLOCK 03LB1 E1400-40104
0515-0664 4 SCREW-MACHINE ASSEMBLY M3 X 0.5 12MM-LG 93907 0515-0664
0535-0031 2 NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK 5U402 0535-0031
38

Replacing Assemblies
Replaceable Parts
Cables

Table 3 Cables

W4

W3

W1

W5

W6

Ref
Des

VTI Part
Number

Qty Description Mfr
Code

Mfr Part
Number

W1 E1562-61601 2 CBL-SCSI 03LB1 E1562-61601
W3 E1562-61603 2 OPTIONAL CBL-ASM DSC DISK 03LB1 E1562-61603
W4 E1562-61604 1 CBL-AUX 03LB1 E1562-61604
W5 N2216-61605 1 CBL-CTRL BRD TO LED BRD 03LB1 N2216-61605
W6 E1562-61606 2 OPTIONAL CBL-ASM RBN DISK 03LB1 E1562-61606
39

Replacing Assemblies
To Remove the Top Cover
To Remove the Top Cover

1 Using a T-10 Torx driver, remove the four screws along each side of the bottom cover.

2 Using a T-10 Torx driver, remove the four screws along the top and the three screws along the back of

the top cover.
40

Replacing Assemblies
To Remove the Printed Circuit Assemblies
To Remove the Printed Circuit Assemblies

1 Remove top cover. Disconnect all cables from the printed circuit boards. Using a T-10 Torx driver,

remove the three screws and the Disk Power Supply assembly.

2 Using a T-10 Torx driver, remove the three screws on the SCSI Interface assembly. Carefully, to avoid

stressing solder joints, pry the boards apart at the connectors and remove the assembly.
41

Replacing Assemblies
To Remove the Printed Circuit Assemblies
3 Using a T-10 Torx driver, remove the three screws from rear and sides of bottom cover. Using a 6 mm

nut driver, remove the three standoffs and the Main assembly.

4 Using a T-10 Torx driver, remove the three screws and the rear cover from the Main assembly.
42

Replacing Assemblies
To Remove a Disk Drive
To Remove a Disk Drive

1 Remove top cover. Disconnect cables from the disk drive and move out of the way. While supporting

the disk drive (A or B), remove the four shoulder srews using a 5/16 inch nut driver. If the disk drive is

being replaced, remove the standoffs from the old disk drive and attach to the new disk drive.

Note: If the nut driver does not fit through the access holes or other difficulty is encountered, remove
the disk drive mounting plate then remove the disk drive. See the following steps.

1 Using a T-10 Torx driver, remove the two

mounting plate screws.

2 From the back of the assembly lift up and back

to remove.

B

A

43

Replacing Assemblies
To Remove the Fan
To Remove the Fan

 1 Remove top cover. Disconnect the cable from the LED assembly and move out of the way.

Disconnect the fan cable.

2 Using a T-10 Torx driver, remove two screws then lift off fan plate. Using a 4.5 mm nut driver, remove

the two standoffs then remove the fan and fan mounting plate.
44

Replacing Assemblies
To Remove the Front Panel
To Remove the Front Panel

1 Remove top cover. Using a T-8 Torx driver, remove the two screws that attach the handles to the

assembly.

2 Using a thin flat-blade screwdriver, remove the screws that attach the connectors to the front panel. Be

careful to avoid scratching the front panel.
45

Replacing Assemblies
To Remove the Front Panel
3 Using a T-10 Torx driver, remove the screw that attaches the front panel to the bottom cover. Lift the

lower part of the front panel off of the tabs on the bottom cover and slide it away from the module.

4 Using a T-10 Torx driver, remove the two screws and the LED board from the front panel.
46

Replacing Assemblies
To Remove the Front Panel
5 If the front panel is being replaced with another that does not have its own L-blocks, remove the

L-blocks from the old front panel and attach to the new front panel using a T-10 Torx driver. Because

alignment is critical, be sure to note the positioning of the brackets. To access the screws, remove the

name plates by pushing a thin screwdriver through the slot on the back side of the front panel.
47

Replacing Assemblies
To Reprogram the Main Assembly
To Reprogram the Main Assembly

If the Main assembly is replaced, the module’s serial number and model number must be
reprogramed into Flash ROM.

Using a Windows NT 4.0 or Windows 2000 and later operating system

1. At an MS-DOS command prompt (C:\>), type the following replacing AAnnnnnnnn with
the module’s serial number then press enter:

diskcmd "DIAG:MNSN ""N2216A" "(E1562E)""","""AAnnnnnnnn"""

2. Wait two minutes for the command to process, then type the following:

diskcmd -r "DIAG:SNUMBER?"

3. Verify that the correct serial number was returned.

4. Type the following:

diskcmd -r "DIAG:MName?"

5. Verify that "N2216A (E1562E)" was returned.

Using an HP-UX 10.2 operating system

1. Using a K shell, type the following replacing AAnnnnnnnn with the module’s serial number:

diskcmd "DIAG:MNSN \"N2216A (E1562E)\",\"AAnnnnnnnn\""

Note If using an SICL only system, use diskcmd_s instead of diskcmd.

2. Wait two minutes for the command to process, then type the following:

diskcmd -r "DIAG:SNUMBER?"

3. Verify that the correct serial number was returned.

4. Type the following:

diskcmd -r "DIAG:MNAME?"

5. Verify that "N2216A (E1562E)" was returned.
48

Hardware Description

Hardware Description
General Description
General Description

The VT2216A VXI/SCSI Interface module is a high-speed dual SCSI interface with optional
internal disk drives. Option 1 adds a 73 GB drive and Option 2 adds two 73 GB drives. The
VT2216A is compatible with software written for the Agilent/HP E1562. However, its SCSI
electrical interface is not compatible with the Agilent/HP E1562.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the module’s
SCSI connectors. The VT2216A contains low-voltage differential (LVD) circuits that may be
damaged if connected to HVD circuits.

Figure 1 VT2216A VXI/SCSI Interface Module

V XI Main fra me

VXI Mainframe
50

Hardware Description
General Description
The VT2216A occupies two slots in a C-size VXI mainframe and does not require calibration.

The VT2216A can be used for local bus disk throughput from input modules such as the
VT1432A 16-channel Digitizer and the Agilent/HP E1430A Digitizer.

The VT2216A can also be used for throughput from high channel count applications using the
VT1413C 64-channel Input, which does not have a local bus interface. In this case, the VT2216A
orchestrates high-speed throughput transfers without the interaction of a controller. For high-
speed applications, the VT2216A Option 2 (with two internal disk drives) is required.

In Static+Dynamic applications, the VT2216A can store data from both local-bus-based modules
and non-local-bus-based modules simultaneously.

The cache size for the optional disks in the VT2216A is 1 megabytes (MB).

The Local Bus is a flexible daisy-chain structure connecting the modules of a VXI system. It is
twelve lines wide in each direction through the P2 connector and an additional 24 lines wide
though the P1 connector.
51

Hardware Description
Circuit Description
Circuit Description

A block diagram for the VT2216A is shown below.

Figure 2 Block diagram of the VT2216A

SCSI
device(s)

Differential

SCSI
A Buffer

SCSI
B

SCSI
device(s)

32k x 32
FIFO

32k x 32
FIFO

Local
Bus

256k x 16
Flash ROM

128k x 16
RAM

128k x 16
Shared RAM

VXI
Interface

VXI
Bus

Differential
52

Hardware Description
Circuit Description
The following is a simplified block diagram of the VT2216A.

Figure 3 Block diagram of the VT2216A

The following is a simplified block diagram of the VT2216A Option 1. Option 1 adds a 73 GB
disk drive to channel B in the standard VT2216A.

Figure 4 Block diagram of the VT2216A Option 1

External
Low Voltage
differential
SCSI-2

External
Low Voltage
differential
SCSI-2

Local
Bus

VXI
Bus

Throughput
Controller

32k x 32
High Speed

FIFO

SCSI
Controller

SCSI
Controller

LVD/SE Active Termination

LVD/SE Active Termination

External
Low Voltage
differential
SCSI-2

External
Low Voltage
differential
SCSI-2

Local
Bus

Throughput
Controller

32k x 32
High Speed

FIFO

SCSI
Controller

VXI
Bus

SCSI
Controller

73 GB Disk
1 MB cache
53

Hardware Description
Circuit Description
The following is a simplified block diagram of the VT2216A Option 2. Option 2 adds two 73 GB
disk drives to the standard VT2216A.

Figure 5 Block diagram of the VT2216A Option 2

LVD/SE Active Termination

Local
Bus

Throughput
Contorller

32k x 32
High Speed

FIFO

SCSI
Controller

73 GB Disk
1 MB cache

73 GB Disk
1 MB cache

External
Low Voltage
differential
SCSI-2

SCSI
Controller

VXI
Bus

LVD/SE Active Termination

External
Low Voltage
differential
SCSI-2
54

Hardware Description
VT2216A Front Panel Description
VT2216A Front Panel Description

Status LEDs

• Failed

• Access

• Disk A (only lit during disk access on VT2216A’s with Option 2)

• Disk B (only lit during disk access on VT2216A’s with Option 1 or 2)

The Disk LED lights when the corresponding disk is in use.

SCSI connectors

The VT2216A has two multi-mode⎯low voltage differential (LVD) and single ended
(SE)⎯SCSI connectors (SCSI A and SCSI B). The VT2216A uses both interfaces to increase
the overall transfer rate.

Figure 6 VT2216A

VT2216A

Low Voltage
Differential / SE

Access Disk A Disk BFailed

SCSI A

VXI / SCSI INTERFACE

SCSI B

bus bus
55

Hardware Description
VT2216A Front Panel Description
56

Using the VT2216A

Using the VT2216A
VXI and SCPI
VXI and SCPI

Message-based VXI devices

The VT2216A is a message-based VXI module. A message-based device is typically the most
intelligent device of a VXIbus system. High performance instruments are typically available as
message-based devices. Besides the basic configuration registers supported by the register-based
devices, the message-based device has common communication elements and a Word Serial
Protocol to allow ASCII-level communication with other message-based modules. This allows
easier multi-manufacturer support, though at some sacrifice in speed to interpret the ASCII
messages. Since the Word Serial Protocol mandates only a byte transfer per transition, which then
must be interpreted by the onboard micro-processor, message-based devices are typically limited
to IEEE-488 speeds.

SCPI

In the past, system instruments spoke many different languages. This caused test system
developers to spend valuable time learning instrument control languages. Test programs written
using these languages were hard to modify and the substitution of one instrument with another
was nearly impossible.

SCPI (Standard Commands for Programmable Instruments) is a closely defined, but broadly
accepted, standard instrument command language. SCPI has the advantage that test programmers
need to learn only one language. Also, test programs written in SCPI can be easily understood
and easily modified and test systems can be easily upgraded.
58

Using the VT2216A
The VXI Registers
The VXI Registers

The VT2216A is a message-based VXI device and cannot be programmed by way of registers
like a register-based device. However, it does use the following VXI registers:

• Offset Register

• Status/Control Register

• Device Type Register

• ID/Logical Address Register

• Data Low Register

• Response/Data Extended Register

• Protocol/Signal Register

These registers are common to many VXI devices. Refer to VXI documentation for more
information.
59

Using the VT2216A
Throughput Terminology
Throughput Terminology

SCPI Commands

The following is an overview of the some of the capabilities of the VT2216A that are controlled
by SCPI commands. See “Programming Using SCPI” starting on page 185 and “SCPI Command
Reference” starting on page 199 for details.

One group of commands begins with the command MMEMory. These are all commands that
refer to mass storage capabilities. They are VT2216A defined commands and not part of the
SCPI standard.

The process by which the VT2216A transfers data can be organized as shown in the following
illustrations. Data for the individual devices is organized into Transfer Units (TUNITs) and
Sessions that are controlled by Sequences. The following sections explain more about these
terms.

Individual SCSI Devices

The VT2216A provides two SCSI buses with a controller on each bus. The controller’s SCSI
logical address is set by switches to SCSI address 4, 5, 6, or 7, but may be changed via the
SYST:COMM:SCSI:SELF:ADDR command in case of an address conflict.

The MMEMory:SCSI subsystem provides a means of initializing and controlling a single SCSI
device. Special configurations are set up using this subsystem. Higher level data Transfer Units
are built using this lowest level entity — an individual device.

The subsystem that refers to devices is MMEMory:SCSI[1|2|...|30]. These are commands that
refer to individual devices on a SCSI bus.

All commands in this subsystem refer to a single device. Commands are provided to open and
close these devices as well as configure special aspects of these devices. Data reads and writes
are not done using the MMEMory:SCSI commands. See the MMEMory:TUNit and
MMEMory:SESSion commands for further explanation about how to completely configure the
SCSI system on a VT2216A.

The MMEMory:SCSIx:* commands do not refer to a specific SCSI device depending upon the
value of x. Instead, the SCSI controller, logical address and logical unit are specified in the
MMEMory:SCSIx:OPEN command. The letter x just provides a convenient means to refer to one
of several open SCSI devices.

See “SCPI Command Reference” starting on page 199 for more information.
60

Using the VT2216A
Throughput Terminology
Figure 7 An example of SCSI devices, Sessions, and TUNITs

Figure 8 An example of SCSI devices, Sessions, and TUNITs

Figure 9 An example of SCSI devices, Session, and TUNITs

SCSI

SCSI-A

Session
TUNIT
SCSI Device

SCSI SCSI SCSI

SCSI

SCSI-A

Session
TUNIT

SCSI-B

SCSI SCSI SCSI

SCSISCSISCSISCSI
SCSI Device

SCSI

SCSI SCSI SCSI

SCSI

SCSI-A

SCSI-B

SCSI Device

TUNIT

Session
61

Using the VT2216A
Throughput Terminology
Transfer Unit (TUNIT)

A Transfer Unit can refer to data from either one or two devices.

The subsystem that refers to Transfer Units is MMEMory:TUNit[1|2|...|15]. These are commands
that refer to a simultaneous data transfer.

Since the VT2216A provides a pair of SCSI buses and may contain two internal devices, a means
is provided to send data to this pair of devices (one on each controller). The MMEMory:TUNit
subsystem informs the VT2216A whether it will be transferring data from just a single device or a
pair of devices. When data is sent to a pair of devices, the throughput rate is twice that of a single
device, but the data is “split” between the devices — two bytes to one device and two bytes to the
other device. Special internal hardware makes it possible for these four bytes to be transferred at
the same time for the highest possible throughput rate. In order to transfer data to/from a pair of
devices, it is necessary for the SCSI blocksize to be the same for the two devices.

This subsystem refers to a continuous sequential stream of data. The name “TUNIT” means
Transfer UNIT. This data may be transferring to/from a single SCSI device. Or for the
VT2216A, a TUNIT may refer to data that is split across devices in such a way as to make the
upper 16 bits of a 32 bit quantity go to one device and the lower 16 bits of the quantity go to
another device. This type of data split requires that the two devices be on different SCSI
controllers. This subsystem does not refer to data that is split in terms of blocks such that N
logical blocks reside on device 1 and N blocks reside on device 2 or some more complicated
scheme. See the MMEMory:SESSion commands for data that is split in this manner.

This subsystem was introduced to describe data split across the two SCSI controllers supported by
the VT2216A. It is also a core element in creating a Session (see the MMEMory:SESSion
subsystem).

See “SCPI Command Reference” starting on page 199 for more information.

Sessions and Striping

A Session provides the ability to combine one or more Transfer Units together into one logical
data repository.

The subsystem that refers to Sessions is MMEMory:SESSion[1|2|3|4]. These are commands that
refer to a complete repository of data.

The reason for using more than one Transfer Unit is to use more of the overall SCSI bandwidth by
writing enough data to one (pair of) disk to fill up its cache, then switching to another (pair of)
disk while the first one writes its data to its media. In this manner, several disks can be supported
on each SCSI bus which increases the overall SCSI throughput. The MMEMory:SESSion
subsystem is the main point of interaction when reading and writing data — it makes the number
of disks involved in the data transfer transparent.

This subsystem describes how data is divided between one or more Transfer Units. Sessions
using multiple Transfer Units will contain data that has N blocks on Transfer Unit 1, M blocks on
Transfer Unit 2 and so on. This is called disk striping. Where a TUNIT describes a width-wise
split, a Session describes a length-wise split. Sessions are useful in high-speed throughputs as a
means of keeping several slower devices busy at the same time. For instance, the wide SCSI bus
has a maximum data transfer rate of 20 MB per second. However, most disks have a maximum
continuous transfer rate to media of ≈15 MB per second. It is easy to see that by using the cache
on the disk, data split across several disks could attain a higher overall throughput than data
written to a single disk.
62

Using the VT2216A
Throughput Terminology
Disk striping can also be used to optimize disk storage. For an example, see Figure 10. Using
only one pair of SCSI devices would allow 100 GB of storage. Striping allows the data to be
spread across two pairs of devices for a total of 200 GB.

In most cases, throughputs and playbacks require both a Sequence and a Session. A Session is
required for all reads and writes including throughputs and playbacks. However, a simple
throughput from a single non-LBUS device or a non-LBUS playback can be done without a
Sequence.

During a throughput Sequence using multiple Transfer Units, each Transfer Unit will have a
specified number of logical blocks written to it before switching to the next Transfer Unit in the
Session. When the last Transfer Unit in the Session has completed its set of logical blocks, the
first Transfer Unit is again accessed.

There are some constraints upon Sessions that are difficult to describe in the individual command
descriptions. The first constraint is that every Transfer Unit in a Session must have the same
number of SCSI devices in it. The second constraint is that if each Transfer Unit is made up of
only a single device, each device must be on the same SCSI controller. An error will be returned
from the MMEMory:SESSion:ADD command if these constraints are not followed.

It is also important to know the cache size of the disks the data is being written to. For the
optional disks in the VT2216A, the cache size is 1 MB. This means that the parameter <Count>
in the MMEMory:SESSion:ADD command should be no more than 2048 blocks. A count larger
than this would require that the disk be read more often and slow down the data transfer.

See “SCPI Command Reference” starting on page 199 for more information.

Figure 10 Example of Disk Striping - Schematic View

Agilent/HP E1430A

Local Bus

Disk 1
ID=0

Disk 1
ID 0≠

Disk 2
ID 0≠

CA bits 1≠1

Disk 2
ID=0

These two disks can be
any external SCSI disks

SCSI-A

SCSI-B

CA bits = 11VT2216A

VT2216A

S
ys

te
m

B
us
63

Using the VT2216A
Throughput Terminology
Figure 11 Example of Disk Striping - View Representing Modules in Mainframe

Ag
ile

nt/
HP

 E
42

08
D

Ag
ile

nt/
HP

 E
14

30
A

Disk
 1

Disk
 1

Disk
 2

Disk
 2

Ag
ile

nt/
HP

 E
14

85
C

BA
NC

-3
50

CO
NT

RO
LL

ER

Local Bus

System Bus

VT
22

16
A

Op
t 2

VT
22

16
A

Op
t 2
64

Using the VT2216A
Throughput Terminology
Sequence

A Sequence specifies the order of operations for a throughput or playback Session.

The subsystem that refers to Sequences is SEQuence[1|2|3|4]. These are commands that provide a
means to specify a complex throughput or playback.

The SEQuence subsystem is used to specify the order of operations for a throughput or playback
Session. This list of operations may contain data transfer requests from both the local bus and the
VME bus in throughput Sequences, but may contain only VME or LBUS data transfers upon
playback. Synchronization and control operations are provided for both throughput and playback.

The fields contained in every element of the Sequence list are: operation, count, address and
miscellaneous. The operation field specifies the action to be done: data transfer, synchronization
or control. The count field is used by many operations to indicate how many operation units will
be transferred. The unit of count is sometimes bytes and sometimes blocks — see the description
of the operation to determine which. The address field is used by operations that do VME data
transfers. The value of address is an offset from the beginning of one of the address spaces. The
miscellaneous field has various meanings depending upon the operation. Not every operation
uses all fields, but every Sequence element contains all four fields. Fields that are not used should
be set to zero.

A Session must be initialized before starting a Sequence. See the MMEMory:SESSion
subsystem.

The behavior of a Sequence is undefined if a throughput operation is requested in a playback
Sequence or vice versa. It is also undefined if an LBUS playback operation is included in a VME
playback Sequence.

SEQuence is not a SCPI supported subsystem.

The Sequence operations that are labeled as utility may be used in either playback or throughput
Sequences. They are intended to help provide synchronization between the Sequence and the
devices that are generating/receiving the data.

See “Sequence Operations Reference” starting on page 141 for details on using Sequence
commands.

Operation Status Register

The subsystem that refers to the operation status register is STATus:OPERation. These are
commands that provide the necessary commands to interface with the operation register.

For more information about the operation status register and other status registers, see
“Programming Using SCPI” starting on page 185.

LIF Directories and Files

This diagram represents the way files are laid out on a disk using the LIF format (Logical
Interchange Format). The first field, the volume label, references the directory that follows. The
directory contains a number of entries each of which references one of the user files, which are on
the remainder of the disk.

For more information about LIF functions see “LIF Library Reference” starting on page 277.
65

Using the VT2216A
Throughput Terminology
Figure 12 Logical Interchange Format (LIF) - Media Layout

Address Space

The VXI system architecture defines three types of address space. A16 space consists of 64 kB,
A24 is 16 MB, and A32 is 4 GB.

The VT2216A has access to A16, A24, and A32 space through a 16-bit port. Or, if devices
support it, it can also use a 32-bit port using D32. The type of VME cycle performed depends on
the type of processor cycle (two cycles for 16-bit or one cycle for 32-bit).

Shared Memory

Shared memory provides a way for the VT2216A to transfer data to a controller. The shared
memory in the VT2216A is mapped to the A24 VXI address space. The controller can then
access that same address space to receive or write data. Note that if SCPI commands or
Sequences refer to shared memory in the VT2216A, the addresses begin at zero. However, if they
refer to shared memory in the A24 space, they may begin at a different value, depending on how
the A24 memory has been allocated among devices.

TTLTRG

TTLTRG consist of eight lines on the VXI backplane on connector P2. They are available to
provide synchronization between devices. The VT2216A can use the TTLTRG lines for simple
communication with other devices. For example, it can wait for a line to go high before taking an
action or it can assert a line as a signal to another device.

Start of Media

#1 #2 #3 #4

End of Media

User Files

Directory
Volume Label

#5#5
66

Using the VT2216A
The VT2216A Throughput/Playback Process
The VT2216A Throughput/Playback Process

Acquisition

Local Bus

The following illustration shows the VT2216A acquiring 24 channels of dynamic data over the
local bus. Each VT1433B module takes in eight channels of data and sends it to the VT2216A
over the local bus. In this example, the VT2216A Option 2 places the data in its two disk drives.

Figure 13 Data Acquisition Using the Local Bus

System Bus

The following illustration shows the VT2216A acquiring data over the System Bus.

Figure 14 Data Acquisition Using the VXI System Bus

Ag
ile

nt/
HP

 E
14

85
C

BA
NC

-3
50

Co
ntr

oll
er

L.B. L.B. L.B.

SCSIA SCSIB

L.B.

VXI Backplane (System Bus)

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

 1

Disk
 2

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

L.B. L.B.

SCSIA

VXI Backplane (System Bus)

SCSIB

L.B. L.B.

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

 1

Disk
 2
67

Using the VT2216A
The VT2216A Throughput/Playback Process
Mixed System Bus and Local Bus

In the following illustration, the VT2216A combines the data from the two busses prior to storing
it on the disk.

Figure 15 Data Acquisition Using the VXI System Bus and the Local Bus

Monitoring the Local Bus during Throughput

In the following illustration, the VT2216A copies a subset of the channels from the local bus to
the system bus. The data is then monitored over the system bus by a controller.

Figure 16 Monitoring During Local Bus Throughput

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

L.B. L.B.

SCSIA

VXI Backplane (System Bus)

SCSIB

L.B. L.B.

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

 1

Disk
 2

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

L.B. L.B.

SCSIA

VXI Backplane (System Bus)

SCSIB

L.B. L.B.

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

 1

Disk
 2
68

Using the VT2216A
The VT2216A Throughput/Playback Process
Monitoring the System Bus during Throughput (Using CVT)

In the following illustration, the VT1413C FIFO is accessed for real-time acquisition of all data to
the VT2216A data disk. The VT1413C Current Value Table (CVT) is monitored by the
controller. The VT2216A cannot provide data to be monitored.

Monitoring by way of the Current Value Table allows higher bandwidth compared to monitoring
the local bus. A disadvantage is that some samples may be missed, but for many applications this
does not present a problem.

Figure 17 Monitoring During System Bus Throughput (Using CVT)

Monitoring the System Bus During Throughput (via the VT2216A)

In the following illustration, all data input by the VT2216A is “reflected” back out by way of the
System Bus for monitoring purposes. The destination for the data could be controller-shared
memory.

Figure 18 Monitoring During System Bus Throughput (via the VT2216A)

Ag
ile

nt/
HP

E1
48

5C

Ag
ile

nt/
HP

E1
45

8A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

L.B. L.B.

SCSIA

VXI Backplane (System Bus)

SCSIB

L.B. L.B.

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

1

Disk
2

CVT

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

L.B. L.B.

SCSIA

VXI Backplane (System Bus)

SCSIB

L.B. L.B.

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B Disk

 1

Disk
 2
69

Using the VT2216A
The VT2216A Throughput/Playback Process
Data Flow

The following illustration shows the data flow in a system using the VT2216A. This system is set
up using eight VT1413C scanning A/D (Analog-to-Digital) Converter modules to acquire input
and send it to a VT2216A.

Figure 19 Data Flow

Throughput Directly to an External Digital Recorder

In the following illustration, data from the four VT1433B modules is input to the VT2216A. The
VT2216A then outputs the data from its SCSI A connector to an external SCSI device.

Figure 20 Throughput Directly to an External Digital Recorder (using the VT2216A)

Data
Input

VT1413C

Controller
Shared
Memory

VT2216A FIFO

73 GB Disk

73 GB Disk

System Bus

Monitoring

SCSI-A

SCSI-B

VT
14

33
B

Co
ntr

oll
er

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

VT
14

33
B

VT
14

33
B

VT
14

33
B

VT
22

16
A

External
SCSI

Device

External
SCSI

Device

SCSI

LVD or SE SCSI

A B
70

Using the VT2216A
The VT2216A Throughput/Playback Process
Post-Processing

In post-processing, a Sequence can be used to unwind the data from the disk in the same order as
the corresponding acquisition Sequence.

Post-Processing Using the Agilent/HP E1485C VXI Signal Processor

In the following illustration, the Agilent/HP E1485C VXI Signal Processor reads data from the
VT2216A using the local bus.

Figure 21 Data Post-Processing Using the Agilent/HP E1485C

Post-Processing Using an Embedded Host

The data can be transferred in several ways. The controller can read the data from the VT2216A
disks via shared memory or directly via SCPI commands. Or, the VT2216A can place the data
directly into the controller’s shared memory. The following illustration shows the controller
transferring the data into its own local memory.

Shared memory is memory space in the controller and in the VT2216A that can be accessed by
both modules.

Figure 22 Data Post-Processing Using an Embedded Host Controller

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

SCSIB

Disk
 1

Disk
 2

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

SCSIB

Shared
Memory

VT
22

16
A

Disk
 1

Disk
 2

Shared
Memory
71

Using the VT2216A
The VT2216A Throughput/Playback Process
Pre-Processing using the Agilent/HP E1485C VXI Signal Processor

The following illustration shows the Agilent/HP E1485C VXI Signal Processor acting as a pre-
processor for data on the local bus that is destined for the VT2216A data disk.

Figure 23 Data Pre-Processing Using the Agilent/HP E1485C

Backup

Backup via Local Bus and Post-Processing

The following illustration shows data sent up to the host controller after first passing through the
Agilent/HP E1485C VXI Signal Processor for preliminary processing.

The archive shown in the diagram can be a disk.

Figure 24 Backup via Local Bus and Post-Processing

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

VT
22

16
A

SCSIA SCSIB

Disk
 1

Disk
 2

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
22

16
A

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B.

LAN

SCSI

Archive

L.B. L.B. L.B.

SCSIB

Disk
 1

Disk
 2
72

Using the VT2216A
The VT2216A Throughput/Playback Process
Backup via System Bus (VME)

The following illustration shows a throughput Session directly backed up to the host controller.
This is the same as the data post-processing using an embedded host controller, previously
described.

From the controller, the data can be archived to disk.

Figure 25 Backup via System Bus

Backup to External DAT

The following illustration shows a throughput Session that has been saved on the disk drive
backed up to an external digital audio tape (DAT).

The SCPI command used for backup is MMEMory:SESSion:COPY. See “SCPI Command
Reference” starting on page 199 for more information.

Figure 26 Backup Disk file to External DAT

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

SCSIB

Shared
Memory

VT
22

16
A

Disk
 1

Disk
 2

Shared
Memory

Ag
ile

nt/
HP

E1
48

5C

Ag
ile

nt/
HP

E1
45

8A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

SCSIA

SCSI
DAT

VXI Backplane (System Bus)

L.B. L.B. L.B.

SCSIB

VT
22

16
A

Disk
1

Disk
2

Shared
Memory
73

Using the VT2216A
The VT2216A Throughput/Playback Process
Backup to Host via SCSI

The following illustration shows copying a throughput Session to the host controller via SCSI. If
the throughput Session has been formatted with LIF and exists on a single SCSI device, then that
device may be mounted under HP-UX and the file copied out under control of the host computer.

For this type of backup, the host must have a LVD (low-voltage differential) or SE (low-voltage
single-ended) SCSI interface and that data must be sent to a LIF file.

Figure 27 Backup to Host via SCSI

Copying a Split Session to One Disk File

A split Session (a TUNIT split between two SCSI disk drives) can be copied to a Session on a
single disk.

In the following illustration, data from the two disks of a VT2216A Option 2 is placed on one of
the disks. An alternative is to send the combined data to an external disk, which could then be
used as a backup file for the Session.

Figure 28 Copying a Split Session

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B. L.B. L.B. L.B.

SCSIB

VT
22

16
A

Disk
 1

Disk
 2

Shared
Memory

Ag
ile

nt/
HP

 E
14

85
C

Ag
ile

nt/
HP

 E
14

58
A

BA
NC

-3
50

Co
ntr

oll
er

VT
14

33
B

VT
14

33
B

VT
14

13
C

VT
14

13
C

VT
14

33
B

SCSIA

VXI Backplane (System Bus)

L.B. L.B. L.B.

SCSIB

VT
22

16
A

Disk
 1

Disk
 2

Shared
Memory
74

VXIplug&play Reference

VXIplug&play Reference
What is VXIplug&play?

VXI Technology uses VXIplug&play technology in the VT2216A. This section outlines some of
the details of VXIplug&play technology.

Overview

The fundamental idea behind VXIplug&play is to provide VXI users with a level of
standardization across different vendors well beyond what the VXI standard specifications
delineate. The VXIplug&play Alliance specifies a set of core technologies centered on a standard
instrument driver technology.

VXI Technology offers VXIplug&play drivers for Agilent VEE-Windows. The VXIplug&play
instrument drivers exist relative to so-called "frameworks." A framework defines the
environment in which a VXIplug&play driver can operate. The VT2216A has VXIplug&play
drivers for the following frameworks: Windows NT, Windows 2000 and later and HP-UX.

VXIplug&play Drivers

The VT2216A VXIplug&play driver is based on the following architecture:

It is most useful to discuss this architecture from the bottom up. The VISA I/O interface allows
interoperability of the VXIplug&play driver technology across interfaces.

 User Program
(*.EXE & *.HTM files, such as soft front panel)

 Function Panel
(based on *.FP file)

Programmatic Developer’s
 Interface Library

 Instrument Driver
(*.DLL, *.C, *.H, *.LIB, *.HTM file)

 VISA
I/O Interface
76

VXIplug&play Reference
The actual instrument driver is a DLL (Dynamic Linked Library) created from:

• A set of source (.C) files.

• A set of header (.H) files, used for compiling the file as well as to describe the driver’s calls to
any program using the driver.

• A standard driver library (.LIB) file, to provide the standard functionality all the drivers would
require.

This DLL is a set of calls to perform instrument actions—at heart, that’s all a VXIplug&play
driver is—a library of instrument calls.

This driver is accessed by Windows applications programs written in languages such as
Agilent VEE or NI LabView.

HTM help files are included to provide descriptive information for the functions in the
VXIplug&play DLL. The HTM help files require a web browser that supports the HTML v3.2,
JavaScript 1.2 and CSS1 standards.
77

VXIplug&play Reference
The VXIplug&play Soft Front Panel
The VXIplug&play Soft Front Panel

If the VT2216A software is running on a Microsoft Windows NT or a Windows 2000 OS or later,
the Soft Front Panel (SFP) program can be used to interface with the VT2216A.

The VT2216A Soft Front Panel helps confirm that the VT2216A is installed correctly. It can also
be used to format, list contents, determine version, and test the VT2216A. However, it is not a
throughput data viewer or throughput session controller. It cannot be controlled from a program
and it does not access all of the VT2216A’s functionality.

Getting Updates

For the latest instrument drivers, visit VXI Technology’s web site at http://www.vxitech.com for
downloads.
78

VXIplug&play Reference
Using the VT2216A VXIplug&play Library
Using the VT2216A VXIplug&play Library

The VT2216A VXIplug&play library simplifies the programming required to record and
playback data with the VT2216A. This section is a programming overview. For more details on
function usage and parameters see the examples programs. The location of the example programs
is listed in the readme file. For specific usage information see the Function Reference (page 82)
and VT2216A LIF Commands (page 304) sections.

Recording from the VXI Local Bus

Format the VT2216A

Before using the VT2216A for data recording, format each disk as a LIF volume. A disk can be
formated using the VT2216A Soft Front Panel (agn2216.exe on a PC) or typing the LIF command
e1562in from the command line (MS-DOS and HP-UX).

Programming Steps for Recording Data

1. Initialize the data source and configure as needed.

2. Call agn2216_init() to initialize the VT2216A module and library.

When using Agilent VEE, this call is done by Agilent VEE and is not a part of the application.

3. Determine the size in bytes of the data (throughput) file.

File size = header size (if used) + (size of scans × number of scans). The scan size is the block
size times the number of channels.

4. Call agn2216_tputfile_open_record() to create a LIF throughput file of needed size and to
open it for writing.

If a header is used, it can be written by calling agn2216_tputfile_write_aint16() or other
agn2216_tputfile_write functions. The header size and structure must be known to the
playback application so that it can be read properly and that the beginning of the data can be
determined.

5. Call agn2216_tput_setup_record() to setup the VT2216A for local bus throughput recording.

6. Call agn2216_tput_reset_localbus(tputhandle, 1) to reset the VT2216A local bus.

7. Set up the local bus on the data source.

8. Call agn2216_tput_reset_localbus(tputhandle, 0) to enable the VT2216A local bus.

9. Call agn2216_tput_start_record() to start recording data on the VT2216A. The data does not
actually begin flowing across the local bus until the data source is started.

10. Start the data source.
79

VXIplug&play Reference
Using the VT2216A VXIplug&play Library
11. Call agn2216_tput_finished() to check for the completion of the data recording. Repeat as
needed.

12. When the data recording is finished, call agn2216_tput_bytes() to get the number of bytes
recorded.

13. Stop the data source from sending more data to the local bus.

14. If it is desired to update a header, call agn2216_tputfile_open_update() to open the file for
writing and use an agn2216_tputfile_write function to rewrite the header as needed.

15. Call agn2216_close() to close the VT2216A module and library.
80

VXIplug&play Reference
Using the VT2216A VXIplug&play Library
Playing Back Data from a Throughput File

Programming Steps for Playing Back Recorded Data

1. Call agn2216_init() to initialize the VT2216A module and library.

When using Agilent VEE, this call is done by Agilent VEE and is not a part of the application.

2. Call agn2216_tputfile_open_playback() to open the LIF throughput file for reading.

If a header is used, it MUST be read by calling agn2216_tputfile_read_aint16() or other
agn2216_tputfile_read functions. The header size and structure must be the same as used for
recording.

3. Determine the size in bytes of each data transfer (scan) being read.

4. Call agn2216_tput_setup_playback() to setup VT2216A for throughput data file playback.

5. Determine the size in bytes of the data to be read. Exclude header, which should have been
read. Data size = size of scans × number of scans.

6. Call agn2216_tput_start_playback() to start the VT2216A reading data into shared RAM.

7. Allocate the memory needed to transfer and process the data to be read.

8. Call agn2216_tput_playback_read_aint16 or other agn2216_tput_playback_read functions to
read each scan of data.

9. Process or display data as needed.

10. Repeat the reading of data scans until all desired data has been read.

11. After the data has been read, call agn2216_tput_abort() to stop the playback from the
VT2216A.

12. Free the memory allocated earlier.

13. Call agn2216_close() to close the VT2216A module and library.
81

VXIplug&play Reference
Function Reference
Function Reference

The VT2216A VXIplug&play driver consists of functions, DLLs, and libraries to allow one to
program the VT2216A or Agilent/HP E1562 using different program languages. On Windows
NT or Windows 2000 and later, Agilent VEE, Visual Basic or Visual C/C++ can be used. On
HP-UX 10.2, Agilent VEE or C may be used.

Alphabetical Function Reference

agn2216_close (page 86)

agn2216_cmd (page 87)

agn2216_cmd_query_int32 (page 88)

agn2216_cmd_query_real64 (page 89)

agn2216_cmd_query_string (page 90)

agn2216_error_message (page 91)

agn2216_error_query (page 92)

agn2216_find (page 93)

agn2216_find_default_volume (page 94)

agn2216_get_debuglevel (page 95)

agn2216_get_dir_entry (page 96)

agn2216_get_first_dir_entry (page 98)

agn2216_get_timeout (page 100)

agn2216_init (page 101)

agn2216_init_volume (page 103)

agn2216_reset (page 104)

agn2216_revision_query (page 105)

agn2216_self_test (page 106)

agn2216_set_debuglevel (page 108)

agn2216_set_timeout (page 109)

agn2216_tput_abort (page 110)

agn2216_tput_bytes (page 111)

agn2216_tput_finished (page 112)
82

VXIplug&play Reference
Function Reference
agn2216_tput_playback_read_aint16 (page 113)

agn2216_tput_playback_read_aint32 (page 114)

agn2216_tput_playback_read_aint32_16 (page 115)

agn2216_tput_playback_read_char (page 116)

agn2216_tput_reset_localbus (page 117)

agn2216_tput_setup_playback (page 118)

agn2216_tput_setup_record (page 119)

agn2216_tput_start_playback (page 120)

agn2216_tput_start_record (page 121)

agn2216_tputfile_close (page 122)

agn2216_tputfile_open_playback (page 123)

agn2216_tputfile_open_record (page 124)

agn2216_tputfile_open_update (page 125)

agn2216_tputfile_read_aint16 (page 126)

agn2216_tputfile_read_aint32 (page 127)

agn2216_tputfile_read_areal64 (page 128)

agn2216_tputfile_read_char (page 129)

agn2216_tputfile_seek (page 130)

agn2216_tputfile_write_aint16 (page 131)

agn2216_tputfile_write_aint32 (page 132)

agn2216_tputfile_write_areal64 (page 133)

agn2216_tputfile_write_char (page 134)
83

VXIplug&play Reference
Function Reference
Hierarchical Function Reference

The hierarchical function reference lists the VT2216 VXIplug&play functions by classes as
defined by the VT2216A function panel. The function panel runs under Agilent VEE,
LabWindows® and LabVIEW®.

DRIVER: agn2216.fp

Initialize

agn2216_init (page 101)

Data Store

Configure

agn2216_init_volume (page 103)

agn2216_tput_reset_localbus (page 117)

agn2216_tput_setup_playback (page 118)

agn2216_tput_setup_record (page 119)

agn2216_tputfile_close (page 122)

agn2216_tputfile_open_playback (page 123)

agn2216_tputfile_open_record (page 124)

agn2216_tputfile_open_update (page 125)

agn2216_tputfile_seek (page 130)

Initiate

agn2216_tput_abort (page 110)

agn2216_tput_bytes (page 111)

agn2216_tput_finished (page 112)

agn2216_tput_start_playback (page 120)

agn2216_tput_start_record (page 121)

Read-Write

agn2216_tput_playback_read_aint16 (page 113)

agn2216_tput_playback_read_aint32 (page 114)

agn2216_tput_playback_read_aint32_16 (page 115)

agn2216_tput_playback_read_char (page 116)

agn2216_tputfile_read_aint16 (page 126)

agn2216_tputfile_read_aint32 (page 127)

agn2216_tputfile_read_areal64 (page 128)

agn2216_tputfile_read_char (page 129)

agn2216_tputfile_write_aint16 (page 131)

agn2216_tputfile_write_aint32 (page 132)
84

VXIplug&play Reference
Function Reference
agn2216_tputfile_write_areal64 (page 133)

agn2216_tputfile_write_char (page 134)

Utility

agn2216_cmd (page 87)

agn2216_cmd_query_int32 (page 88)

agn2216_cmd_query_real64 (page 89)

agn2216_cmd_query_string (page 90)

agn2216_error_message (page 91)

agn2216_error_query (page 92)

agn2216_find (page 93)

agn2216_find_default_volume (page 94)

agn2216_get_debuglevel (page 95)

agn2216_set_debuglevel (page 108)

agn2216_get_dir_entry (page 96)

agn2216_get_first_dir_entry (page 98)

agn2216_get_timeout (page 100)

agn2216_set_timeout (page 109)

agn2216_reset (page 104)

agn2216_revision_query (page 105)

agn2216_self_test (page 106)

Close

agn2216_close (page 86)
85

VXIplug&play Reference
Function Reference
agn2216_close

Close the VXIplug&play library and release all resources.

Syntax: ViStatus _VI_FUNC agn2216_close(ViSession vi);

Comments: Close the VXIplug&play library, close the VT2216A library, release all resources for use by other
programs.

It is good programming practice to call this agn2216_close() function when finished with the
resources. It is possible that not calling this function could cause a DLL on the PC to hold some
memory or hardware resources until a power down.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Example: /* close and deallocate resources */

vierr=agn2216_close(session);

if(vierr)

{

 vierr2=agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

}

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN
86

VXIplug&play Reference
Function Reference
agn2216_cmd

Sends a string to the instrument, for commands where no response is expected.

Syntax: ViStatus _VI_FUNC agn2216_cmd(ViSession vi, ViString cmd);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string that does
not exceed 8 kB.

For SCPI commands that return numbers use agn2216_cmd_query_int32 or agn2216_cmd_
query_real64.

For SCPI commands that return a string use agn2216_cmd_query_string.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN
87

VXIplug&play Reference
Function Reference
agn2216_cmd_query_int32

Sends a string to the instrument and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_int32(ViSession vi, ViString cmd,
ViPInt32 response);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string that does
not exceed 8 kB.

The numeric response is returned as an Int32, space for which must be allocated before calling
this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

response response from instrument

Data Type: ViPInt32
Input/Output: OUT
88

VXIplug&play Reference
Function Reference
agn2216_cmd_query_real64

Sends a string to the instrument and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_real64(ViSession vi, ViString cmd,
ViPReal64 response);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string that does
not exceed 8 kB.

The numeric response is returned as a Real64, space for which must be allocated before calling
this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

response response from instrument

Data Type: ViPReal64
Input/Output: OUT
89

VXIplug&play Reference
Function Reference
agn2216_cmd_query_string

Sends a string to the instrument and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_string(ViSession vi, ViString cmd,
ViInt32 size, ViChar response[]);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string that does
not exceed 8 kB.

The response is returned in a ViChar[] array, which must be allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

size Size preallocated for response from instrument.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN 0
AGN2216_INT32_MAX 2147483647

response Response from instrument.

Data Type: ViChar []
Input/Output: OUT
90

VXIplug&play Reference
Function Reference
agn2216_error_message

Translates a status number to a string description.

Syntax: ViStatus _VI_FUNC agn2216_error_message(ViSession vi, ViStatus error,
ViChar _VI_FAR message[]);

Comments: agn2216_error_message() accepts an error number and buffer and will write a string into the
buffer describing the error. The buffer should be at least 256 bytes long.

The error number referred to above is the return status that is returned from every function in the
VXIplug&play library.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Example: void main()
{
ViSession session;
char st[255];
ViStatus vierr;
ViStatus vierr2;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2 = agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

error This is the ViStatus number for which a description is desired.

Data Type: ViStatus
Input/Output: IN
Values:
AGN2216_INT32_MIN -2147483648
AGN2216_INT32_MAX 2147483647

message Returns the error description string.

Data Type: ViChar _VI_FAR []
Input/Output: OUT
91

VXIplug&play Reference
Function Reference
agn2216_error_query

Queries the instrument and returns instrument specific error information.

Syntax: ViStatus _VI_FUNC agn2216_error_query(ViSession vi, ViPInt32 error,
ViChar _VI_FAR error_message[]);

Comments: Sends a SYST:ERR? to the instrument and returns the response. The returned string can be up to
256 characters including null and must be allocated in advance.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Example: void main()

{

ViSession session;

char st[256];

ViStatus vierr;

ViInt32 instError

 ...

 vierr = agn2216_error_query(session,(ViPInt32)&instError,st);

 printf("error %d = %s\n",instError,st);

 exit(0);

}

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

error Instrument error code.

Data Type: ViPInt32
Input/Output: OUT

error_message Returns the instrument error message.

Data Type: ViChar _VI_FAR []
Input/Output: OUT
92

VXIplug&play Reference
Function Reference
agn2216_find

Find all VXI/SCSI Interface modules in the VXI bus.

Syntax: ViStatus _VI_FUNC agn2216_find(ViSession vi, ViInt32 addList[], ViInt32
listSize, ViPInt32 numFound, ViChar rsrc[], ViInt32 rsrcLen);

Comments: agn2216_find() searches the VXI mainframe and returns the VXI Logical Address for every
VXI/SCSI Interface module found.

Be sure to allocate the ViInt32 array before calling agn2216_find().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine "agn2216_error_message"

Parameter Description

vi Instrument Handle returned from agn2216_init() or a VI_NULL.

Data Type: ViSession
Input/Output: IN

addList An array to hold VXI logical addresses of VXI/SCSI Interface
modules.

Data Type: ViInt32 []
Input/Output: OUT

listSize Size of the addList array.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_FIND_LIST_SIZE_MIN 0
AGN2216_FIND_LIST_SIZE_MAX 255

numFound Returns the number of VXI/SCSI Interface modules found.

Data Type: ViPInt32
Input/Output: OUT

rsrc Returns the resource name for the first found VXI/SCSI Interface
module.

Data Type: ViChar []
Input/Output: OUT

rsrcLen Sets the size of the rsrc[] buffer.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_FIND_RSRC_LEN_MIN 0
AGN2216_FIND_RSRC_LEN_MAX 255
93

VXIplug&play Reference
Function Reference
agn2216_find_default_volume

Find the first disks on SCSI channel A and B.

Syntax: ViStatus _VI_FUNC agn2216_find_default_volume(ViSession vi, ViPString
volA, ViPString volB);

Comments: agn2216_find_default_volume() searches the VT2216A SCSI buses for disks and returns the
lowest address found as hex ASCII. Returns x if no disk is found on that SCSI channel.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine "agn2216_error_message"

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volA Returns the string of the hex address of the first disk on SCSI A (0--f).

Data Type: ViPString
Input/Output: OUT

volB Returns the string of the hex address of the first disk on SCSI B (0--f).

Data Type: ViPString
Input/Output: OUT
94

VXIplug&play Reference
Function Reference
agn2216_get_debuglevel

Returns the current VT2216A VXIplug&play library debuglevel setting for that vi.

Syntax: ViStatus _VI_FUNC agn2216_get_debuglevel(ViSession vi, ViPInt16
timeout);

Comments: The default debuglevel is 0 and no VT2216A VXIplug&play library debug information is printed.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout Debug level

Data Type: ViPInt16
Input/Output: OUT
95

VXIplug&play Reference
Function Reference
agn2216_get_dir_entry

Gets the next file directory entry.

Syntax: ViStatus _VI_FUNC agn2216_get_dir_entry(ViSession vi, ViString volume,
ViPString filename, ViPString date, ViPString time, ViPString type,
ViPReal64 size, ViPReal64 allocated, ViPReal64 start);

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A 3 character string for the volume, Examples "V00", "Vx0",
"V0x."

Data Type: ViString
Input/Output: IN

filename Returns the string containing the filename for this entry.

Data Type: ViPString
Input/Output: OUT

date Returns the string containing the date in the form "mmm
dd,yyyy."

Data Type: ViPString
Input/Output: OUT

time Returns the string containing the time in the form "hh:mm:ss."

Data Type: ViPString
Input/Output: OUT

type Returns the string containing the file type (such as BDAT).

Data Type: ViPString
Input/Output: OUT

size File size used in bytes.

Data Type: ViPReal64
Input/Output: OUT

allocated File size allocated in bytes.

Data Type: ViPReal64
Input/Output: OUT

start Starting location, bytes.

Data Type: ViPReal64
Input/Output: OUT
96

VXIplug&play Reference
Function Reference
Comments: agn2216_get_dir_entry() returns the next file directory entry and advances the current get_dir_
entry location. agn2216_get_first_dir_entry() must be called before agn2216_get_dir_entry(), to
reset the current get_dir_entry location.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine "agn2216_error_message"
97

VXIplug&play Reference
Function Reference
agn2216_get_first_dir_entry

Gets the first entry in the file directory.

Syntax: ViStatus _VI_FUNC agn2216_get_first_dir_entry(ViSession vi, ViString
volume, ViPString filename, ViPString date, ViPString time, ViPString
type, ViPReal64 size, ViPReal64 allocated, ViPReal64 start);

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A three character string for the volume, Examples "V00", "Vx0",
"V0x."

Data Type: ViString
Input/Output: IN

filename Returns the string containing the filename for this entry.

Data Type: ViPString
Input/Output: OUT

date Returns the string containing the date in the form "mmm
dd,yyyy."

Data Type: ViPString
Input/Output: OUT

time Returns the string containing the time in the form "hh:mm:ss."

Data Type: ViPString
Input/Output: OUT

type Returns the string containing the file type (such as BDAT).

Data Type: ViPString
Input/Output: OUT

size File size used in bytes.

Data Type: ViPReal64
Input/Output: OUT

allocated File size allocated in bytes.

Data Type: ViPReal64
Input/Output: OUT

start Starting location, bytes.

Data Type: ViPReal64
Input/Output: OUT
98

VXIplug&play Reference
Function Reference
Comments: agn2216_get_first_dir_entry() returns the first entry in the file directory. Sets the current get_dir_
entry location to the 2nd entry.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine "agn2216_error_message"
99

VXIplug&play Reference
Function Reference
agn2216_get_timeout

Returns the current timeout in milliseconds.

Syntax: ViStatus _VI_FUNC agn2216_get_timeout(ViSession vi, ViPInt32 timeout);

Comments: Some disk operations are slow, so the default timeout, set by agn2216_init, is thirty seconds.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout Timeout in milliseconds

Data Type: ViPInt32
Input/Output: OUT
100

VXIplug&play Reference
Function Reference
agn2216_init

Initialize the VXIplug&play library and register all VXI/SCSI Interface modules.

Syntax: ViStatus _VI_FUNC agn2216_init(ViRsrc rsrcName, ViBoolean id_query,
ViBoolean reset, ViPSession vi);

Comments: The initialize function initializes the software connection to the instrument and optionally verifies
that instrument is in the system. It also initializes the VT2216A library. If the VT2216A library
is already in use an error may occur.

If the agn2216_init() function encounters an error, then the value of the vi output parameter will
be VI_NULL.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Example: void main()

{

ViSession session;

char st[100];

ViStatus vierr;

ViStatus vierr2;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

Parameter Description

rsrcName The Instrument Description.

Data Type: ViRsrc
Input/Output: IN

id_query If(VI_TRUE) Perform In-System Verification.

If(VI_FALSE) Do not perform In-System Verification.

Data Type: ViBoolean
Input/Output: IN

reset If(VI_TRUE) Perform Reset Operation.

If(VI_FALSE) Do not perform Reset operation.

Data Type: ViBoolean
Input/Output: IN

vi Instrument Handle. This is VI_NULL if an error occurred during
the init.

Data Type: ViPSession
Input/Output: OUT
101

VXIplug&play Reference
Function Reference
 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }
102

VXIplug&play Reference
Function Reference
agn2216_init_volume

Initializes (formats) the volume with a LIF directory.

Syntax: ViStatus _VI_FUNC agn2216_init_volume(ViSession vi, ViString volume);

Comments: The init_volume function initializes a LIF directory on the disk(s) corresponding to the volume.
Existing data will be lost.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A string for the volume, Examples "V00", "Vx0", "V0x."

Data Type: ViString
Input/Output: IN
103

VXIplug&play Reference
Function Reference
agn2216_reset

The function returns the instrument to the reset state.

Syntax: ViStatus _VI_FUNC agn2216_reset(ViSession vi);

Comments: The function sends the instrument a "*RST", returning the instrument to the reset state.

In addition, this function cancels any pending command or query.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN
104

VXIplug&play Reference
Function Reference
agn2216_revision_query

Returns revision information for both the driver on the host and the software in the VXI/SCSI
Interface module. The returned string can be up to 256 characters including null.

Syntax: ViStatus _VI_FUNC agn2216_revision_query(ViSession vi, ViChar driver_
rev[], ViChar instr_rev[]);

Comments: The returned string can be up to 256 characters including null and must be allocated in advance.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

driver_rev Returns a string containing the software revision information.

Data Type: ViChar []
Input/Output: OUT

instr_rev Returns a string containing the instrument driver and firmware
revision.

Data Type: ViChar []
Input/Output: OUT
105

VXIplug&play Reference
Function Reference
agn2216_self_test

Performs a selftest of the hardware.

Syntax: ViStatus _VI_FUNC agn2216_self_test(ViSession vi, ViPInt16 testResult,
ViChar testMessage[]);

Comments: agn2216_self_test() performs a selftest of the hardware. It returns 0 if all tests pass or a negative
error code if the self test fails.

testMessage is a short message written back, so be sure to allocate at least eighty characters.

Specify which boards to test by calling agn2216_init(). Even if agn2216_init() fails, the board
logical addresses are saved for use by agn2216_self_test().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Example: char message[100];

ViStatus vierr;

ViStatus vierr2;

ViSession session;

ViInt16 result;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,message);

 printf("error %d = %s\n",vierr,st);

 }

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

testResult result of test

Data Type: ViPInt16
Input/Output: OUT

testMessage string result of test

Data Type: ViChar []
Input/Output: OUT
106

VXIplug&play Reference
Function Reference
 vierr=agn2216_self_test(session,&result,message)

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,message);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }

 printf("selftest reports %d = %s\n",result,message);
107

VXIplug&play Reference
Function Reference
agn2216_set_debuglevel

Sets the debug level for the VT2216A VXIplug&play library.

Syntax: ViStatus _VI_FUNC agn2216_set_debuglevel(ViSession vi, ViInt16
debuglevel);

Comments: The default debuglevel is 0 and no VT2216A VXIplug&play library debug information is printed.
If debuglevel 1, then error information is printed to stderr. If debug > 1, then additional debug
information is printed to stdout.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

debuglevel

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_INT16POS_MIN 0
AGN2216_INT16_MAX 32767
108

VXIplug&play Reference
Function Reference
agn2216_set_timeout

Sets the timeout in milliseconds.

Syntax: ViStatus _VI_FUNC agn2216_set_timeout(ViSession vi, ViInt32 timeout);

Comments: Some disk operations are slow, so the default timeout, set by agn2216_init, is thirty seconds.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN
AGN2216_INT32_MAX 2147483647
109

VXIplug&play Reference
Function Reference
agn2216_tput_abort

Halt a disk module sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_abort(ViSession vi);

Comments: This can be used to abort a throughput record before it would normally complete. This function
may also be used to stop a playback sequence early and place the VXI/SCSI Interface module in
an idle state.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN
110

VXIplug&play Reference
Function Reference
agn2216_tput_bytes

Gets the number of bytes for the finished session.

Syntax: ViStatus _VI_FUNC agn2216_tput_bytes(ViSession vi, ViPReal64 dataBytes);

Comments: Gets the number of bytes for the finished session.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

dataBytes Data Type: ViPReal64
Input/Output: OUT
111

VXIplug&play Reference
Function Reference
agn2216_tput_finished

Checks to see if the throughput session is finished.

Syntax: ViStatus _VI_FUNC agn2216_tput_finished(ViSession vi, ViPInt32 flag);

Comments: The flag is set when record is finished. If the session is finished, this function also updates the size
of the thruput session, which is returned by agn2216_init().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

flag Data Type: ViPInt32
Input/Output: OUT
112

VXIplug&play Reference
Function Reference
agn2216_tput_playback_read_aint16

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint16(ViSession vi,
ViInt32 size, ViPInt32 readSize, ViInt16 buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViInt16[], array. Performs the required
synchronization with the VT2216A to get bytes transferred into its shared RAM and copy the
bytes into the host. The value size should be less than or equal to 262142 ((256*1024) - 2),
AGN2216_DATA_SRAM_MAX and should be the same as the value bytesPerScan passed to
agn2216_tput_setup_playback(). The response is returned in a buffer array, which must be
allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a
multiple of two bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt16 []
Input/Output: OUT
113

VXIplug&play Reference
Function Reference
agn2216_tput_playback_read_aint32

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint32(ViSession vi,
ViInt32 size, ViPInt32 readSize, ViInt32 buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViInt32[], array. Performs the required
synchronization with the VT2216A to get bytes transferred into its shared RAM and copy the
bytes into the host. The value size should be less than or equal to 262142 ((256*1024) - 2),
AGN2216_DATA_SRAM_MAX and should be the same as the value bytesPerScan passed to
agn2216_tput_setup_playback(). The response is returned in a buf array, which must be allocated
before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a
multiple of two bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT
114

VXIplug&play Reference
Function Reference
agn2216_tput_playback_read_aint32_16

Copies bytes from playback to buffer converting int16 to int32.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint32_16(ViSession vi,
ViInt32 size, ViPInt32 readSize, ViInt32 buf[]);

Comments: Reads throughput file via shared memory. Returns ViInt16 data as ViInt32[] array. Performs the
required synchronization with the VT2216A to get bytes transferred into its shared RAM and
copy the bytes into the host. The value size should be less than or equal to 262142 ((256*1024) -
2), AGN2216_DATA_SRAM_MAX and should be the same as the value bytesPerScan passed to
agn2216_tput_setup_playback(). The response is returned in a buf array, which must be allocated
before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a
multiple of four bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf. This will be
2*size.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT
115

VXIplug&play Reference
Function Reference
agn2216_tput_playback_read_char

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_char(ViSession vi, ViInt32
size, ViPInt32 readSize, ViChar buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViChar[] array. Performs the required
synchronization with the VT2216A to get bytes transferred into its shared RAM and copy the
bytes into the host. The value size should be less than or equal to 262142 ((256*1024) - 2),
AGN2216_DATA_SRAM_MAX and should be the same as the value bytesPerScan passed to
agn2216_tput_setup_playback(). The response is returned in a buf[] array, which must be
allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes to be read. Must be a multiple of two bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes returned in buf[].

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViChar []
Input/Output: OUT
116

VXIplug&play Reference
Function Reference
agn2216_tput_reset_localbus

Put the disk module local bus into or out of reset.

Syntax: ViStatus _VI_FUNC agn2216_tput_reset_localbus(ViSession vi, ViInt16
resetState);

Comments: Allow the application to put the disk module local bus into reset or take it out of reset. This is
needed to provide for the safe reset of all devices on the local bus. For example, a safe reset
consists of first placing all adjacent local bus devices into reset, then from left to right in the VXI
card cage, take each device's local bus out of reset.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

resetState Reset action.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUT_LBUSRESET_OUT 0
AGN2216_TPUT_LBUSRESET_IN 1
117

VXIplug&play Reference
Function Reference
agn2216_tput_setup_playback

Initialize the disk module sequence to perform a playback.

Syntax: ViStatus _VI_FUNC agn2216_tput_setup_playback(ViSession vi, ViReal64
dataOffset, ViInt32 bytesPerScan);

Comments: Playback uses an disk module sequence to read bytes into the shared RAM on disk module.
Synchronization between the host program and the disk module is done through the use of the
first two bytes of disk module shared RAM as a flag. By using the routine agn2216_tput_
playback_read(), all synchronization is encapsulated. Be aware that the maximum value for
bytesPerScan is 262142. A session is setup to be used with the disk module sequence. The open
playback file is closed. The functions agn2216_tput_playback_read_aint16(), etc., are used to
perform the read and the required synchronization with the disk module after agn2216_tput_start_
playback() has been called.

Data_offset is a ViReal64 because ViInt32 does not have enough bits to represent the number of
bytes in a very large file.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

dataOffset Byte offset into file. Must be a multiple of two bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

bytesPerScan Scan size, bytes. Must be a multiple of two bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142
118

VXIplug&play Reference
Function Reference
agn2216_tput_setup_record

Initialize the disk module sequence to perform a local bus throughput.

Syntax: ViStatus _VI_FUNC agn2216_tput_setup_record(ViSession vi, ViInt32
bytesPerInputBlock, ViInt16 numberInputs, ViPInt32 retPadByte);

Comments: Initialize the disk module sequence to perform a local bus throughput with the specified number
of inputs and blocksize. A constant blocksize for all channels is assumed. A disk module session
is setup to write at the next SCSI block boundary in the file opened in agn2216_tputfile_open_
record(). The open file is then closed, as the session is used for the throughput instead of the file.
Any header information to be written to the file should be written before calling this function as
the current position of the file pointer is used to determine where to start writing the data. The
number of bytes needed for padding is returned so that the offset in the file to the recorded data
can be determined.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

bytesPerInputBlock Bytes per input channel block. Must be a multiple of four bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

numberInputs Number of input channels.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUT_INT16POS_MIN 0
AGN2216_TPUT_INT16_MAX 32767

retPadByte Number of bytes to the next disk sector.

Data Type: ViPInt32
Input/Output: OUT
119

VXIplug&play Reference
Function Reference
agn2216_tput_start_playback

Start the disk module playback sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_start_playback(ViSession vi, ViReal64
lengthInBytes, ViInt32 firstScanOffset);

Comments: Start the disk module playback sequence. The argument firstScanOffset is the scan number of the
first scan⎯it is zero otherwise.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

lengthInBytes Playback length. Must be a multiple of two bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

firstScanOffset Scan number of the first scan.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN 0
AGN2216_INT32_MAX 2147483647
120

VXIplug&play Reference
Function Reference
agn2216_tput_start_record

Start the VXI/SCSI Interface module record sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_start_record(ViSession vi, ViReal64
lengthInBytes);

Comments: Start the record sequence.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

lengthInBytes Record length. Must be a multiple of four bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503
121

VXIplug&play Reference
Function Reference
agn2216_tputfile_close

Close a LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_close(ViSession vi, ViInt16
tputfileId);

Comments: Closes an existing LIF file, removing it from the open file table.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32
122

VXIplug&play Reference
Function Reference
agn2216_tputfile_open_playback

Open a disk module LIF file in preparation for a playback or reading.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_playback(ViSession vi, ViString
filename, ViPString fullFilename, ViPInt16 tputfileid);

Comments: Opens an existing LIF file in preparation for a throughput post-process. The open file's tputfileid
is returned so the application may read any header information contained in the file. The volume
name may be defaulted so the full filename including the volume is returned.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

filename File to open.

Data Type: ViString
Input/Output: IN

fullFilename Full filename returned.

Data Type: ViPString
Input/Output: OUT

tputfileid Throughput file ID returned.

Data Type: ViPInt16
Input/Output: OUT
123

VXIplug&play Reference
Function Reference
agn2216_tputfile_open_record

Create and open a LIF file in preparation for a throughput record.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_record(ViSession vi, ViString
filename, ViReal64 totalBytes, ViPString fullFilename, ViPInt16
tputfileid);

Comments: The total file size must be known at open time, as a LIF file cannot be extended in size after it has
been created. This means that the value of totalBytes must include the size of the data to be
recorded, the size of any header information and the size of any information following the
recorded data. The value passed to totalBytes will be padded with one SCSI blocksize, since the
recorded data must start at a SCSI block boundary. This will mean that any directory listing may
show a different size for the file than what was passed to this function. The allocated file size, in
bytes, is returned.

Since this routine may be called with just a filename allowing the volume to be defaulted, the full
filename is returned to the calling function. It is possible to default the volume name only if a
single disk is used as the LIF volume, or, if a pair of disks, one on each SCSI bus of the VXI/SCSI
Interface module, is used as the LIF volume. Also, the SCSI devices must be the lowest
addressed devices on the SCSI bus. If the volume name is specified, any number of SCSI devices
may be used to make up the file system. This function expects that a file system already exists on
the devices. This can be done using the e1565in.exe command from the LIF utilities or from the
soft front panel.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().
Data Type: ViSession
Input/Output: IN

filename File to open.
Data Type: ViString
Input/Output: IN

totalBytes Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

fullFilename Full filename returned.
Data Type: ViPString
Input/Output: OUT

tputfileid Throughput file ID returned.
Data Type: ViPInt16
Input/Output: OUT
124

VXIplug&play Reference
Function Reference
agn2216_tputfile_open_update

Open an existing file for modification.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_update(ViSession vi, ViString
fullFileName, ViPInt16 tputfileid);

Comments: Open an existing file for modification.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

fullFileName Full file name.

Data Type: ViString
Input/Output: IN

tputfileid Throughput file ID returned.

Data Type: ViPInt16
Input/Output: OUT
125

VXIplug&play Reference
Function Reference
agn2216_tputfile_read_aint16

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_aint16(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViInt16 buf[]);

Comments: Read file from current location using the VT2216A shared memory. The response is returned in a
ViInt16 buf[] array, which must be allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt16 []
Input/Output: OUT
126

VXIplug&play Reference
Function Reference
agn2216_tputfile_read_aint32

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_aint32(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViInt32 buf[]);

Comments: Read file from current location using the VT2216A shared memory. The response is returned in a
ViInt32 buf[] array, which must be allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT
127

VXIplug&play Reference
Function Reference
agn2216_tputfile_read_areal64

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_areal64(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViReal64 buf[]);

Comments: Read file from current location using the VT2216A shared memory. The response is returned in a
ViReal64 buf[] array, which must be allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViReal64 []
Input/Output: OUT
128

VXIplug&play Reference
Function Reference
agn2216_tputfile_read_char

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_char(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViChar buf[]);

Comments: Read file from current location using the VT2216A shared memory. The response is returned in a
ViChar buf[] array, which must be allocated before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0

readSize Number of bytes returned in buf[].

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViChar []
Input/Output: OUT
129

VXIplug&play Reference
Function Reference
agn2216_tputfile_seek

Seek to an absolute location in a file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_seek(ViSession vi, ViInt16
tputfileId, ViReal64 dataOffset);

Comments: Seek to an absolute location in a file.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

dataOffset Absolute seek location, bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503
130

VXIplug&play Reference
Function Reference
agn2216_tputfile_write_aint16

Write data from ViInt16 buf[] to a VT2216A LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_aint16(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViInt16 buf[], ViPInt32 writeSize);

Comments: Write data from ViInt16 buf[] to current file location using the VT2216A shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViInt16 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT
131

VXIplug&play Reference
Function Reference
agn2216_tputfile_write_aint32

Write data from ViInt32 buf[] to a VT2216A LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_aint32(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViInt32 buf[], ViPInt32 writeSize);

Comments: Write data from ViInt32 buf[] to current file location using the VT2216A shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViInt32 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT
132

VXIplug&play Reference
Function Reference
agn2216_tputfile_write_areal64

Write data from ViReal64 buf[] to a VT2216A LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_areal64(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViReal64 buf[], ViPInt32 writeSize);

Comments: Write data from ViReal64 buf[] to current file location using the VT2216A shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViReal64 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT
133

VXIplug&play Reference
Function Reference
agn2216_tputfile_write_char

Write data from ViChar buf[] to a VT2216A LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_char(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViChar buf[], ViPInt32 writeSize);

Comments: Write data from ViChar buf[] to current file location using the VT2216A shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return value
to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViChar []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT
134

VXIplug&play Reference
VXIplug&play Library Errors
VXIplug&play Library Errors

Error Number Description

-1074003967 Parameter 1 is invalid

-1074003966 Parameter 2 is invalid

-1074003965 Parameter 3 is invalid

-1074003964 Parameter 4 is invalid

-1074003963 Parameter 5 is invalid

-1074003962 Parameter 6 is invalid

-1074003961 Parameter 7 is invalid

-1074003960 Parameter 8 is invalid

-1074003951 Instrument IDN does not match

-1074001184 VT2216A Error Unknown

-1074001183 VT2216A Error 1 - No session available (see Error Number 1 on page 311)

-1074001182 VT2216A Error 2 - Invalid volume name (see Error Number 2 on page 311)

-1074001181 VT2216A Error 3 - Missing volume name (see Error Number 3 on page 311)

-1074001180 VT2216A Error 4 - Volume already open (see Error Number 4 on page 311)

-1074001179 VT2216A Error 5 - Interface error (see Error Number 5 on page 311)

-1074001178 VT2216A Error 6 - Out of memory (see Error Number 6 on page 311)

-1074001177 VT2216A Error 7 - System error (see Error Number 7 on page 311)

-1074001176 VT2216A Error 8 - Invalid id (see Error Number 8 on page 311)

-1074001175 VT2216A Error 9 - Invalid file size (see Error Number 9 on page 311)

-1074001174 VT2216A Error 10 - Invalid file name (see Error Number 11 on page 311)

-1074001173 VT2216A Error 11 - Invalid file mode (see Error Number 11 on page 311)

-1074001172 VT2216A Error 12 - File does not exist (see Error Number 12 on page 311)

-1074001171 VT2216A Error 13 - File does not have size (see Error Number 13 on page 311)

-1074001170 VT2216A Error 14 - File size already specified (see Error Number 14 on page 311)

-1074001169 VT2216A Error 15 - End of file before transfer completed (see Error Number 15 on page 311)

-1074001168 VT2216A Error 16 - Invalid file type (see Error Number 16 on page 311)

-1074001167 VT2216A Error 17 - End of directory before transfer completed (see Error Number 17 on
page 311)

-1074001166 VT2216A Error 18 - Not a LIF volume (see Error Number 18 on page 311)
135

VXIplug&play Reference
VXIplug&play Library Errors
-1074001165 VT2216A Error 19 - File rename volume error (see Error Number 19 on page 311)

-1074001164 VT2216A Error 20 - File position is past end of file (see Error Number 20 on page 311)

-1074001163 VT2216A Error 21 - End of file cannot be set beyond file size (see Error Number 21 on
page 311)

-1074001162 VT2216A Error 22 - File open, cannot rename, move, copy, or delete (see Error Number 22 on
page 311)

-1074001152 N2216 SCPI Error Unknown

-1074001052 N2216 SCPI Error -100 - Command error (see Error Number -100 on page 271)

-1074001051 N2216 SCPI Error -101 - Invalid character (see Error Number -101 on page 271)

-1074001050 N2216 SCPI Error -102 - Syntax error (see Error Number -102 on page 271)

-1074001049 N2216 SCPI Error -103 - Invalid separator (see Error Number -103 on page 271)

-1074001048 N2216 SCPI Error -104 - Data type error (see Error Number -104 on page 271)

-1074001047 N2216 SCPI Error -105 - GET not allowed (see Error Number -105 on page 271)

-1074001044 N2216 SCPI Error -108 - Parameter not allowed (see Error Number -108 on page 271)

-1074001043 N2216 SCPI Error -109 - Missing parameter (see Error Number -109 on page 271)

-1074001042 N2216 SCPI Error -110 - Command header error (see Error Number -110 on page 271)

-1074001041 N2216 SCPI Error -111 - Header separator error (see Error Number -111 on page 271)

-1074001040 N2216 SCPI Error -112 - Program mnemonic too long (see Error Number -112 on page 271)

-1074001039 N2216 SCPI Error -113 - Undefined header (see Error Number -113 on page 271)

-1074001038 N2216 SCPI Error -114 - Header suffix out of range (see Error Number -114 on page 271)

-1074001032 N2216 SCPI Error -120 - Numeric data error (see Error Number -120 on page 271)

-1074001031 N2216 SCPI Error -121 - Invalid character in number (see Error Number -121 on page 272)

-1074001029 N2216 SCPI Error -123 - Exponent too large (see Error Number -123 on page 272)

-1074001028 N2216 SCPI Error -124 - Too many digits (see Error Number -124 on page 272)

-1074001024 N2216 SCPI Error -128 - Numeric data not allowed (see Error Number -128 on page 272)

-1074001022 N2216 SCPI Error -130 - Suffix error (see Error Number -130 on page 272)

-1074001021 N2216 SCPI Error -131 - Invalid suffix (see Error Number -131 on page 272)

-1074001018 N2216 SCPI Error -134 - Suffix too long (see Error Number -134 on page 272)

-1074001014 N2216 SCPI Error -138 - Suffix not allowed (see Error Number -138 on page 272)

-1074001012 N2216 SCPI Error -140 - Character data error (see Error Number -140 on page 272)

-1074001011 N2216 SCPI Error -141 - Invalid character data (see Error Number -141 on page 272)

-1074001008 N2216 SCPI Error -144 - Character data too long (see Error Number -144 on page 272)

-1074001004 N2216 SCPI Error -148 - Character data not allowed (see Error Number -148 on page 272)

-1074001002 N2216 SCPI Error -150 - String data error (see Error Number -150 on page 272)

-1074001001 N2216 SCPI Error -151 - Invalid string data (see Error Number -151 on page 272)

-1074000994 N2216 SCPI Error -158 - String data not allowed (see Error Number -158 on page 272)

Error Number Description
136

VXIplug&play Reference
VXIplug&play Library Errors
-1074000992 N2216 SCPI Error -160 - Block data error (see Error Number -160 on page 272)

-1074000991 N2216 SCPI Error -161 - Invalid block data (see Error Number -161 on page 272)

-1074000984 N2216 SCPI Error -168 - Block data not allowed (see Error Number -168 on page 272)

-1074000982 N2216 SCPI Error -170 - Expression error (see Error Number -170 on page 273)

-1074000981 N2216 SCPI Error -171 - Invalid expression (see Error Number -171 on page 273)

-1074000974 N2216 SCPI Error -178 - Expression data not allowed (see Error Number -178 on page 273)

-1074000971 N2216 SCPI Error -181 - Invalid outside macro definition (see Error Number -181 on page 273)

-1074000969 N2216 SCPI Error -183 - Invalid inside macro definition (see Error Number -183 on page 273)

-1074000952 N2216 SCPI Error -200 - Execution error (see Error Number -200 on page 273)

-1074000932 N2216 SCPI Error -220 - Parameter error (see Error Number -220 on page 273)

-1074000931 N2216 SCPI Error -221 - Settings conflict (see Error Number -221 on page 273)

-1074000930 N2216 SCPI Error -222 - Data out of range (see Error Number -222 on page 273)

-1074000929 N2216 SCPI Error -223 - Too much data (see Error Number -223 on page 273)

-1074000928 N2216 SCPI Error -224 - Illegal parameter value (see Error Number -224 on page 273)

-1074000912 N2216 SCPI Error -240 - Hardware error (see Error Number -240 on page 273)

-1074000911 N2216 SCPI Error -241 - Hardware missing (see Error Number -241 on page 273)

-1074000902 N2216 SCPI Error -250 - Mass storage error (see Error Number -250 on page 273)

-1074000901 N2216 SCPI Error -251 - Missing mass storage (see Error Number -251 on page 273)

-1074000900 N2216 SCPI Error -252 - Missing media (see Error Number -252 on page 274)

-1074000899 N2216 SCPI Error -253 - Corrupt media (see Error Number -253 on page 274)

-1074000898 N2216 SCPI Error -254 - Media full (see Error Number -254 on page 274)

-1074000894 N2216 SCPI Error -258 - Media protected (see Error Number -258 on page 274)

-1074000880 N2216 SCPI Error -272 - Macro execution error (see Error Number -272 on page 274)

-1074000879 N2216 SCPI Error -273 - Illegal macro label (see Error Number -273 on page 274)

-1074000876 N2216 SCPI Error -276 - Macro recursion error (see Error Number -276 on page 274)

-1074000875 N2216 SCPI Error -277 - Macro redefinition not allowed (see Error Number -277 on page 274)

-1074000874 N2216 SCPI Error -278 - Macro header not found (see Error Number -278 on page 274)

-1074000842 N2216 SCPI Error -310 - System error (see Error Number -310 on page 274)

-1074000841 N2216 SCPI Error -311 - Memory error (see Error Number -311 on page 274)

-1074000837 N2216 SCPI Error -315 - Configuration memory lost (see Error Number -315 on page 274)

-1074000831 N2216 SCPI Error -321 - Out of memory (see Error Number -321 on page 274)

-1074000822 N2216 SCPI Error -330 - Self-test failed (see Error Number -330 on page 274)

-1074000802 N2216 SCPI Error -350 - Queue overflow (see Error Number -350 on page 274)

-1074000752 N2216 SCPI Error -400 - Query error (see Error Number -400 on page 275)

-1074000742 N2216 SCPI Error -410 - Query INTERRUPTED (see Error Number -410 on page 275)

Error Number Description
137

VXIplug&play Reference
VXIplug&play Library Errors
-1074000732 N2216 SCPI Error -420 - Query UNTERMINATED (see Error Number -420 on page 275)

-1074000722 N2216 SCPI Error -430 - Query DEADLOCKED (see Error Number -430 on page 275)

-1074000712 N2216 SCPI Error -440 - Query UNTERMINATED after indefinite response (see Error Number
440 on page 275)

-1074000672 N2216 Device Error Unknown

-1074000671 N2216 Device Error 6201 - Device not open (see Device Error 6201 on page 275)

-1074000670 N2216 Device Error 6202 - Device not ready (see Device Error 6202 on page 275)

-1074000669 N2216 Device Error 6203 - Device already open (see Device Error 6203 on page 275)

-1074000668 N2216 Device Error 6204 - Device incompatible (see Device Error 6204 on page 275)

-1074000667 N2216 Device Error 6205 - Device error (see Device Error 6205 on page 275)

-1074000666 N2216 Device Error 6206 - Session full (see Device Error 6206 on page 275)

-1074000665 N2216 Device Error 6207 - Session busy (see Device Error 6207 on page 275)

-1074000664 N2216 Device Error 6208 - Session empty (see Device Error 6208 on page 275)

-1074000663 N2216 Device Error 6209 - Sequence full (see Device Error 6209 on page 276)

-1074000662 N2216 Device Error 6210 - Sequence busy (see Device Error 6210 on page 276)

-1074000661 N2216 Device Error 6211 - Sequence empty (see Device Error 6211 on page 276)

-1074000660 N2216 Device Error 6212 - Local bus busy (see Device Error 6212 on page 276)

-1074000659 N2216 Device Error 6213 - Require even block count (see Device Error 6213 on page 276)

-1074000658 N2216 Device Error 6214 - Device timeout (see Device Error 6214 on page 276)

-1074000657 N2216 Device Error 6215 - Sequence bus error (see Device Error 6215 on page 276)

-1074000656 N2216 Device Error 6216 - Max safe disk temp exceeded (see Device Error 6216 on page 276)

-1074000655 N2216 Device Error 6217 - Write to a read-only device (see Device Error 6217 on page 276)

-1074000640 Not VXI

-1074000639 Mem allocation failure

-1074000638 NULL pointer detected

-1074000637 reset failed

-1074000636 An unexpected error occurred

-1074000635 ViSession (parmeter 1) was not created by this driver

-1074000634 String not found in table

-1074000633 Instrument Error Detected, call agn2216_error_query()

-1074000632 No SCSI devices found

-1074000631 Invalid SCSI device

-1074000630 Invalid file ID

-1074000629 Could not find a pair of SCSI devices

-1074000628 Too many files open

-1074000627 Thruput file not open

Error Number Description
138

VXIplug&play Reference
VXIplug&play Library Errors
-1074000626 Playback scan too large for shared memory

-1074000625 Read size too large for shared memory

-1074000624 Error reading N2216 status

-1074000623 Bad N2216 status

-1074000622 N2216 read error

-1074000621 N2216 write error

-1074000620 Can't map N2216 shared RAM

-1074000619 Error reading N2216 throughput size

-1074000618 Error sending seq:cont

-1074000617 Record size too small

-1074000616 Record size not a 4 byte multiple

-1074000615 Record size exceeds file size

-1074000614 Playback scan too small

-1074000613 Playback scan not a 2 byte multiple

-1074000612 Read size too small

-1074000611 Read size not an element multiple

-1074000610 Volume not found

-1074000609 LIF directory not found

-1074000608 LIF directory entry not found

Error Number Description
139

VXIplug&play Reference
VXIplug&play Library Errors
140

Sequence Operations Reference

Sequence Operations Reference
Sequence Overview
Sequence Overview

What is a Sequence?

Sequence operations are the primary method of transferring data to or from VT2216A Sessions on
either the Local Bus or the VXI System Bus. A Sequence is a list of data transfer operations that
are performed repeatedly until an entire throughput or playback is complete. Throughput
Sequences may contain operations that transfer data from the Local and/or VXI Bus to a Session
which consists of one or more SCSI devices. Playback Sequences contain operations that transfer
data from the Session to either the Local or the VXI Bus, but not to both. Sequences may also
contain synchronization and control operations. See “Using the VT2216A” starting on page 57
for an overview of the VT2216A and explanation of these terms.

Four Sequences may be defined in Sequence memory at any one time but only one can run at a
time. An individual Sequence may perform either throughput or playback operations but
throughput and playback operations may not be mixed in an individual Sequence. The behavior
of a Sequence is undefined if a throughput operation is requested in a playback Sequence or vice
versa. The behavior is also undefined if both VXI and Local Bus playback operations are
included in a Sequence.

How are Sequences and SCPI related?

Sequences are defined by SCPI commands, but may be run either independently or within a SCPI
program. It may noticed that SCPI commands exist that may also be used to throughput and
playback data to the VT2216A. In some cases, the data transfer could be accomplished either
with SCPI commands (MMEMory:SESSion:READ:* and MMEMory:SESSion:WRITE:*)
or with Sequence operations (LBUS Consume, LBUS Generate, Throughput and Playback).
Typically, users find that Sequences provide an easier way (and in some cases the only way) to
perform complex throughput and playback operations.

It is best to use Sequences for nearly all throughput operations because of the ability of Sequences
to handle large data transfers and multiple devices. SCPI throughput commands are limited to
small amounts of data with a single device.

Either SCPI commands or Sequences can be used to playback data that involves all of the data
from a Session. However, Sequences must be used for any playback operations that involve only
parts of the data (such as one channel from multiple-channel data).
142

Sequence Operations Reference
Sequence Overview
Creating Sequences

Adding Sequence Elements

Sequences are defined by an instrument-specific SCPI subsystem. All the Sequence operations
documented in this chapter are implemented by using the SCPI command:

SEQuence[1|2|3|4]:ADD <Operation>,<Count>,<Address>,<Misc>

Each time this command is issued an element representing one operation is added to the end of the
Sequence queue in memory. The maximum number of operations in a single sequence is 100.

It is normally more convenient to define Sequence operations programmatically so that a
Sequence may be altered by changing the program and re-executing it. By creating a SCPI
program to define the Sequence, the Sequence can be altered more easily.

If the Sequence number [1|2|3|4] is not specified the Sequence element is added to Sequence 1.

Required Fields

Every Sequence element requires that all four fields:
(<Operation>,<Count>,<Address>,<Misc>) be filled though not every operation uses all
fields. For some Sequence operations certain fields represent two pieces of information as
indicated in the Sequence operation descriptions.

The <Operation> field specifies what type of action will take place: data transfer,
synchronization or control. This value corresponds to the code listed in the programming
reference section of this chapter for the specific type of operation.

The <Count> field is used by many operations to indicate how many units will be transferred.
The unit of <Count> may be either bytes or blocks, as indicated in the description of each
operation. For some Sequence operations, this field represents two pieces of information as
indicated in the Sequence operation descriptions.

The <Address> field is used mainly by operations that transfer data over the VXI System Bus.
The value of <Address> is an offset from the beginning of one of the address spaces. The
Shared RAM space is local to the VT2216A.

The miscellaneous <Misc> field has various meanings depending on the operation.

Accepted Field Values

Field values must be specified as numeric values. All decimal representations, including signs,
decimal points and scientific notation are accepted as field values:

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01

Note, however, that negative numbers will generate an error and fractional values will be
automatically rounded to the nearest integer.

The fields may be specified in decimal, hex, octal, or binary:

123, #h7B, #q173, #b1111011
143

Sequence Operations Reference
Sequence Overview
Related SCPI commands

Other SCPI commands in addition to SEQuence:ADD that can or must be used with relation to
Sequence operations are documented in detail in the SCPI programming section of this book.
These commands include:

• MMEMory:SCSI, MMEMory:TUNit and MMEMory:SESSion. These subsystems must be
used to initialize the Session before starting a Sequence.

• SEQuence:BEGin starts Sequence execution.

• SEQuence:DELete:ALL deletes all operations from the current Sequence list. This command
should be sent before adding elements to a Sequence.

• SEQuence:SIZE? returns the number of elements in the Sequence.
144

Sequence Operations Reference
Sequence Quick Reference
Sequence Quick Reference

Operation Code (hex) Count Address Misc Page

Control operations

Do Nothing 0000 N/A N/A N/A 150

Terminate Sequence 0001 N/A N/A N/A 151

Pause N msec 0002 Milliseconds N/A N/A 152

Pause N loops 000a Loops N/A N/A 161

Execute New Sequence 0004 Seq nbr N/A N/A 154

New Sequence If Count 0005 Seq nbr MSB LSB 155

TTLTRG Control 0003 Bit field N/A N/A 153

TTLTRG Arm 0006 Bit field N/A N/A 156

TTLTRG Wait 0007 Bit field N/A N/A 157

IRQ Arm 0008 Bit field N/A N/A 158

IRQ Wait 0009 Bit field N/A N/A 159

Test shared RAM and Skip 7000 N/A RAM address Skipped
Sequence Op’s

160

Local bus throughput operations

LBUS Eavesdrop 1001 LBUS blocks N/A LBUS width-
Bytes/block

163

LBUS Consume Pipe 1002 Blks pass
Blks consume

N/A LBUS width-
Bytes/block

164

LBUS Eavesdrop Pipe 1003 Blks pass
Blks eaves

N/A LBUS width-
Bytes/block

165

LBUS Consume Continuous 1100 LBUS blocks N/A LBUS width-
Bytes/block

166

LBUS Eavesdrop Continuous 1101 LBUS blocks N/A LBUS width-
Bytes/block

167

LBUS Consume Pipe Continuous 1102 Blks pass
Blks consume

N/A LBUS width-
Bytes/block

168

LBUS Eavesdrop Pipe Continuous 1103 Blks pass
Blks eaves

N/A LBUS width-
Bytes/block

169
145

Sequence Operations Reference
Sequence Quick Reference
Local bus playback operations
LBUS Generate 2000 LBUS blocks N/A LBUS width-

Bytes/block
170

LBUS Append 2001 LBUS blocks N/A LBUS width-
Bytes/block

171

VXI bus throughput operations
Throughput A16 Buff 16 3000 Transfer bytes A16 address N/A 172

Throughput A16 Buff D32 3002 Transfer bytes A16 address N/A 172

Throughput A24 Buff 16 3003 Transfer bytes A24 address N/A 172

Throughput A24 Buff D32 3005 Transfer bytes A24 address N/A 172

Throughput A32 Buff 16 3006 Transfer bytes A32 address N/A 172

Throughput A32 Buff D32 3008 Transfer bytes A32 address N/A 172

Throughput A16 FIFO 16 3009 Transfer bytes A16 address N/A 172

Throughput A16 FIFO 32 300A Transfer bytes A16 address N/A 172

Throughput A16 FIFO D32 300B Transfer bytes A16 address N/A 172

Throughput A24 FIFO 16 300C Transfer bytes A24 address N/A 172

Throughput A24 FIFO 32 300D Transfer bytes A24 address N/A 172

Throughput A24 FIFO D32 300E Transfer bytes A24 address N/A 172

Throughput A32 FIFO 16 300F Transfer bytes A32 address N/A 172

Throughput A32 FIFO 32 3010 Transfer bytes A32 address N/A 172

Throughput A32 FIFO D32 3011 Transfer bytes A32 address N/A 172

Throughput Shared RAM 3012 Transfer bytes RAM address N/A 172

Throughput Dummy Bytes 3100 Pad bytes N/A N/A 173

VXI bus playback operations
Playback A16 Buff 16 4000 Transfer bytes A16 address N/A 175

Playback A16 Buff D32 4002 Transfer bytes A16 address N/A 175

Playback A24 Buff 16 4003 Transfer bytes A24 address N/A 175

Playback A24 Buff D32 4005 Transfer bytes A24 address N/A 175

Playback A32 Buff 16 4006 Transfer bytes A32 address N/A 175

Playback A32 Buff D32 4008 Transfer bytes A32 address N/A 175

Playback A16 FIFO 16 4009 Transfer bytes A16 address N/A 175

Playback A16 FIFO 32 400A Transfer bytes A16 address N/A 175

Playback A16 FIFO D32 400B Transfer bytes A16 address N/A 175

Playback A24 FIFO 16 400C Transfer bytes A24 address N/A 175

Playback A24 FIFO 32 400D Transfer bytes A24 address N/A 175

Playback A24 FIFO D32 400E Transfer bytes A24 address N/A 175

Operation Code (hex) Count Address Misc Page
146

Sequence Operations Reference
Sequence Quick Reference
Playback A32 FIFO 16 400F Transfer bytes A32 address N/A 175

Playback A32 FIFO 32 4010 Transfer bytes A32 address N/A 175

Playback A32 FIFO D32 4011 Transfer bytes A32 address N/A 175

Playback Shared RAM 4012 Transfer bytes RAM address N/A 175

Playback Bit Bucket 4100 Discard bytes N/A N/A 176

Local bus throughput operations with monitor
LBUS Consume Monitor Shared RAM 5000 LBUS blocks RAM address LBUS width-

Bytes/block
177

LBUS Eavesdrop Monitor Shared RAM 5001 LBUS blocks RAM address LBUS width-
Bytes/block

177

LBUS Consume Pipe Monitor Shared RAM 5002 Blks pass
Blks consume

RAM address LBUS width-
Bytes/block

177

LBUS Eavesdrop Pipe Monitor Shared RAM 5003 Blks pass
Blks eaves

RAM address LBUS width-
Bytes/block

177

LBUS Consume Monitor A24 5014 LBUS blocks A24 address LBUS width-
Bytes/block

177

LBUS Eavesdrop Monitor A24 5015 LBUS blocks A24 address LBUS width-
Bytes/block

177

LBUS Consume Pipe Monitor A24 5016 Blks pass
Blks consume

A24 address LBUS width-
Bytes/block

177

LBUS Eavesdrop Pipe Monitor A24 5017 Blks pass
Blks eaves

A24 address LBUS width-
Bytes/block

177

VXI throughput operations with monitor
Throughput Shared RAM Monitor Shared RAM 3812 Monitor bytes RAM address RAM address 174

Throughput Shared RAM Monitor A24 Buff D32 3912 Monitor bytes RAM address A24 address 174

Throughput Shared RAM Monitor A24 Buff 3a12 Monitor bytes RAM address A24 address 174

Throughput A16 FIFO D32 Monitor Shared RAM 380b Monitor bytes A16 address RAM address 174

Throughput A16 FIFO D32 Monitor A24 Buff D32 390b Monitor bytes A16 address A24 address 174

Throughput A16 FIFO D32 Monitor A24 Buff 3a0b Monitor bytes A16 address A24 address 174

Throughput A16 FIFO16 Monitor Shared RAM 3809 Monitor bytes A16 address RAM address 174

Throughput A16 FIFO16 Monitor A24 Buff D32 3909 Monitor bytes A16 address A24 address 174

Throughput A16 FIFO16 Monitor A24 Buff 3a09 Monitor bytes A16 address A24 address 174

Throughput A16 Buff 16 Monitor Shared RAM 3800 Monitor bytes A16 address RAM address 174

Throughput A16 Buff 16 Monitor A24 BuffD32 3900 Monitor bytes A16 address A24 address 174

Throughput A16 Buff 16 Monitor A24 Buff 3a00 Monitor bytes A16 address A24 address 174

Throughput A16 Buff D32 Monitor Shared RAM 3802 Monitor bytes A16 address RAM address 174

Throughput A16 Buff D32 Monitor A24 Buff D32 3902 Monitor bytes A16 address A24 address 174

Throughput A16 Buff D32 Monitor A24 Buff 3a02 Monitor bytes A16 address A24 address 174

Operation Code (hex) Count Address Misc Page
147

Sequence Operations Reference
Sequence Quick Reference
Throughput A24 FIFO D32 Monitor Shared RAM 380e Monitor bytes A24 address RAM address 174

Throughput A24 FIFO D32 Monitor A24 Buff D32 390e Monitor bytes A24 address A24 address 174

Throughput A24 FIFO D32 Monitor A24 Buff 3a0e Monitor bytes A24 address A24 address 174

Throughput A24 FIFO 16 Monitor Shared RAM 380c Monitor bytes A24 address RAM address 174

Throughput A24 FIFO 16 Monitor A24 Buff D32 390c Monitor bytes A24 address A24 address 174

Throughput A24 FIFO 16 Monitor A24 Buff 3a0c Monitor bytes A24 address A24 address 174

Throughput A24 Buff 16 Monitor Shared RAM 3803 Monitor bytes A24 address RAM address 174

Throughput A24 Buff 16 Monitor A24 Buff D32 3903 Monitor bytes A24 address A24 address 174

Throughput A24 Buff 16 Monitor A24 Buff 3a03 Monitor bytes A24 address A24 address 174

Throughput A24 Buff D32 Monitor Shared RAM 3805 Monitor bytes A24 address RAM address 174

Throughput A24 Buff D32 Monitor A24 Buff D32 3905 Monitor bytes A24 address A24 address 174

Throughput A24 Buff D32 Monitor A24 Buff 3a05 Monitor bytes A24 address A24 address 174

Synchronization operations
Wait Bit Set A16 6000 Bit mask A16 address Loops 179

Wait Bit Clear A16 6001 Bit mask A16 address Loops 179

Wait Bit Set A24 6002 Bit mask A24 address Loops 179

Wait Bit Clear A24 6003 Bit mask A24 address Loops 179

Wait Bit Set A32 6004 Bit mask A32 address Loops 179

Wait Bit Clear A32 6005 Bit mask A32 address Loops 179

Wait Bit Set Shared RAM 6006 Bit mask RAM address Loops 179

Wait Bit Clear Shared RAM 6007 Bit mask RAM address Loops 179

Wait A16 Count 16 6008 16-bit value A16 address Loops 180

Wait A24 Count 16 6009 16-bit value A24 address Loops 180

Wait A32 Count 16 600A 16-bit value A32 address Loops 180

Wait Count Shared RAM 16 600B 16-bit value RAM address Loops 180

Wait A16 Count 32 600C 32-bit value A16 address Loops 180

Wait A24 Count 32 600D 32-bit value A24 address Loops 180

Wait A32 Count 32 600E 32-bit value A32 address Loops 180

Wait Count Shared RAM 32 600F 32-bit value RAM address Loops 180

Wait FIFO Empty 6010 N/A N/A N/A 181

Wait FIFO Half Empty 6011 N/A N/A N/A 181

Control A16 Reg16 6018 N/A A16 address Value 182

Control A24 Reg16 6019 N/A A24 address Value 182

Control A32 Reg16 601A N/A A32 address Value 182

Control Reg Shared RAM 16 601B N/A RAM address Value 182

Operation Code (hex) Count Address Misc Page
148

Sequence Operations Reference
Sequence Quick Reference
Control A16 Reg 32 601C N/A A16 address Value 182

Control A24 Reg 32 601D N/A A24 address Value 182

Control A32 Reg 32 601E N/A A32 address Value 182

Control Reg Shared RAM 32 601F N/A RAM address Value 182

Dump A24 Seq Bytes 6020 N/A A24 address N/A 183

Dump A32 Seq Bytes 6021 N/A A32 address N/A 183

Dump Shared RAM Seq Bytes 6022 N/A RAM address N/A 183

Operation Code (hex) Count Address Misc Page
149

Sequence Operations Reference
VT2216A Sequence Operations
VT2216A Sequence Operations

Do Nothing 0000

No Sequence operation is performed.

Sequence Syntax: #h0000,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0000,0,0,0

Description: No fields are used.
150

Sequence Operations Reference
VT2216A Sequence Operations
Terminate Sequence 0001

The Sequence stops executing.

Sequence Syntax: #h0001,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0001,0,0,0

Description: This operation terminates the Sequence even if the final count has not been met. This is useful
only for creating a non-looping or one-time Sequence. No fields are used.
151

Sequence Operations Reference
VT2216A Sequence Operations
Pause N msec 0002

The Sequence stops executing for a designated period of time.

Sequence Syntax: #h0002,<Count>,<Address>,<Misc>

<Count> ::= 10:4294967295

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0002,40,0,0

Description: This operation causes the Sequence to stop executing for the number of milliseconds designated
by <Count>. The resolution of the clock is only 10 ms, therefore the specified count is rounded to
the nearest 10 ms value. For a pause of shorter duration see “Pause N loops” on page 161.

<Address> and <Misc> are not used.
152

Sequence Operations Reference
VT2216A Sequence Operations
TTLTRG Control 0003

Controls the assertion of the TTLTRG lines.

Sequence Syntax: #h0003,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0003,#b1010101,0,0

Description: All TTLTRG lines are controlled simultaneously. Therefore, one (or more) lines may be set while
all others are cleared. Any bits set to 1 in bits 0-7 of <Count> represent corresponding TTLTRG
lines that are asserted.

<Address> and <Misc> are not used.

See “TTLTRG Arm” on page 156 and “TTLTRG Wait” on page 157.
153

Sequence Operations Reference
VT2216A Sequence Operations
Execute New Sequence 0004

Begins executing a new logical Sequence.

Sequence Syntax: #h0004,<Count>,<Address>,<Misc>

<Count> ::= 1:4

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0004,3,0,0

Description: This operation begins executing the new logical Sequence specified by <Count>. The new
Sequence inherits the Sequence type and total bytes remaining from the currently executing
Sequence. This operation is useful in situations that require a one-time set of operations at the
beginning of a throughput followed by a looping set of data acquisition operations. An example
of such a one-time action is writing a header at the beginning of a data stream.

<Address> and <Misc> are not used.
154

Sequence Operations Reference
VT2216A Sequence Operations
New Sequence If Count 0005

Begins executing a new logical Sequence if the remaining byte count is less than the value
specified.

Sequence Syntax: #h0005,<Count>,<Address>,<Misc>

<Count> ::= 1:4

<Address> ::= 0:#hFFFFFFFF

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h0005,2,#hAEC,#h33E1F671

Description: This operation begins executing the new logical Sequence number specified by <Count> if the
remaining byte count is less than that specified by <Address> and <Misc>. Since the byte count
is a 64-bit value and the Sequence fields are only 32-bit values, both the <Address> and <Misc>
are used to specify the byte count. The most significant 32 bits are specified in the <Address>
field and the least significant 32 bits are specified in the <Misc> field. The new Sequence inherits
the Sequence type and total bytes remaining from the currently executing Sequence.
155

Sequence Operations Reference
VT2216A Sequence Operations
TTLTRG Arm 0006

Clears a set of latched TTLTRG assertions.

Sequence Syntax: #h0006,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0006,#b11011101,0,0

Description: Clearing latched TTLTRG assertions guarantees that any subsequent TTLTRG Wait will not be
satisfied by an old latched TTLTRG assertion. Any bits set to 1 in bits 0-7 of <Count> clear
assertions for corresponding to TTLTRG lines. The diagram below illustrates the effect of
TTLTRG Arm and TTLTRG Wait on triggering in response to TTLTRG line assertion:

A perceived exception occurs if the trigger line is already asserted (set to the low voltage level)
when the TTLTRG arm command is issued. In this case, a subsequent TTLTRG Wait will result
in no delay because the assertion requirement was previously fulfilled by the interrupt generated
prior to TTLTRG Arm:

<Address> and <Misc> are not used.

See “TTLTRG Control” on page 153 and “TTLTRG Wait” on page 157.

Unasserted

Asserted

Arm Wait

Trigger

Unasserted

Asserted

Trigger

WaitArm

Interrupt
156

Sequence Operations Reference
VT2216A Sequence Operations
TTLTRG Wait 0007

Waits for a set of TTLTRG lines to be asserted.

Sequence Syntax: #h0007,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0007,#b10101010,0,0

Description: Because TTLTRG assertions are latched, it is not necessary that all of the specified lines be set at
the same time; only that each specified line undergo an unasserted-to-asserted transition since the
last TTLTRG Wait or TTLTRG Arm operation. Any bits set to 1 in bits 0-7 of <Count> represent
corresponding TTLTRG lines that await assertion.

<Address> and <Misc> are not used.

See “TTLTRG Control” on page 153 and “TTLTRG Arm” on page 156.
157

Sequence Operations Reference
VT2216A Sequence Operations
IRQ Arm 0008

Clears a set of latched IRQ assertions from a specified logical address.

Sequence Syntax: #h0008,<Count>,<Address>,<Misc>

<Count> ::= 0:255

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0008,86,0,0

Description: Clearing latched IRQ assertions guarantees that any subsequent IRQ Wait will not be satisfied by
an old latched IRQ assertion. The <Count> field indicates the logical address for which the
latched IRQ should be cleared.

<Address> and <Misc> are not used.
158

Sequence Operations Reference
VT2216A Sequence Operations
IRQ Wait 0009

Waits for IRQ from a specific logical address.

Sequence Syntax: #h0009,<Count>,<Address>,<Misc>

<Count> ::= 1:255

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0009,222,0,0

Description: When a VXI system is configured, each IRQ line is assigned an IRQ Handler. The IRQ Handler
may be any device that supports this capability. In order for the VT2216A to proceed after
executing the IRQ Wait Sequence operation, it must receive an IRQ from the specific logical
address on any IRQ line for which it has been assigned as IRQ Handler. See the VXI Resource
Manager documentation to determine how to assign IRQ Handlers.

<Address> and <Misc> are not used.
159

Sequence Operations Reference
VT2216A Sequence Operations
Test shared RAM and Skip 7000

Execute the next sequence operation if a shared RAM location is non-zero.

Sequence Syntax: #h7000,<Count>,<Address>,<Misc>

<Count> ::= 0

Shared RAM <Address> ::= 0:262142

<Misc> ::= 0:100

SCPI example: SEQ:ADD #h7000,0,0,1

Description: Read a 16-bit value at the specified shared RAM <Address>. If the value read is zero, skip the
next <Misc> number of sequence operations. If the value read is non-zero, set the 16-bit value in
shared RAM to zero and execute the next sequence operation.
160

Sequence Operations Reference
VT2216A Sequence Operations
Pause N loops 000a

The Sequence stops executing for a designated number of loops.

Sequence Syntax: #h0002,<Count>,<Address>,<Misc>

<Count> ::= 1:4294967295

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h000a,10,0,0

Description: This operation causes the Sequence to execute a delay loop for the number of repetitions
designated by <Count>. This operation may be used to pause a Sequence for a shorter duration of
time than may be achieved with the ‘Pause N milliseconds’ (0002) operation for which the
minimum time is 10 milliseconds. A <Count> of 1560927 results in a delay of ≥ 1 second. The
actual delay time may be longer due to the unpredictable nature of interrupts.

<Address> and <Misc> are not used.
161

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Consume 1000

A throughput operation that reads blocks of data from the local bus and writes them to a SCSI
Session.

Sequence Syntax: #h1000,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1000,8,0,#h03000800

Description: The LBUS Consume operation puts the local bus chip into a mode that acts as a sink for bytes on
the local bus. In other words, no bytes are passed to the next module to the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
162

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Eavesdrop 1001

A throughput operation that reads blocks of data from the local bus and writes them to a SCSI
Session in addition to passing them along to the next local bus module to the right.

Sequence Syntax: #h1001,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1001,2,0,#h3004000

Description: The LBUS Eavesdrop operation puts the local bus chip into a mode in which each byte received
from the module to the left is copied into the VT2216A and is also passed to the next module to
the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
163

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Consume Pipe 1002

A throughput operation that writes some blocks of local bus data to a SCSI Session while passing
other blocks of local bus data to the next module to the right.

Sequence Syntax: #h1002,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1002,#h40002,0,#h3008000

Description: The LBUS Consume Pipe operation reads N blocks of data from the local bus and writes them to
a SCSI Session then passes M blocks to the next module to the right without copying those bytes
to the VT2216A. This operation is used for high data rate applications that require multiple
VT2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well as the
number of blocks to consume (N). This is accomplished by placing M in the most significant
16 bits of the <Count> field and N in the least significant 16 bits of the <Count> field. M and N
must have a greatest common denominator (cd) of ≤ 256 where the largest of M/cd and N/cd
is ≤ 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of bytes in
a local bus block. The upper 8 bits indicate the local bus width. The value indicating the local
bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
164

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Eavesdrop Pipe 1003

A throughput operation that writes some blocks of local bus data to a SCSI Session while passing
those blocks plus additional blocks of local bus data to the next module to the right.

Sequence Syntax: #h1003,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1003,#h20001,0,#h03004000

Description: The LBUS Eavesdrop Pipe operation reads N blocks of data from the local bus, writes them to a
SCSI Session and also passes them to the next module to the right. The operation then passes M
blocks to the next module to the right without copying them to the VT2216A. This operation is
used for high data rate applications that require multiple VT2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well as the
number of blocks to Eavesdrop (N). This is accomplished by placing M in the most significant
16 bits of the <Count> field and N in the least significant 16 bits of the <Count> field. M and N
must have a greatest common denominator (cd) of ≤ 256 where the largest of M/cd and N/cd
is ≤ 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of bytes in
a local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
165

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Consume Continuous 1100

A throughput operation that reads blocks of data from the local bus and writes them to a SCSI
Session.

Sequence Syntax: #h1100,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1100,8,0,#h03000800

Description: The LBUS Consume operation puts the local bus chip into a mode that acts as a sink for bytes on
the local bus. In other words, no bytes are passed to the next module to the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
166

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Eavesdrop Continuous 1101

A throughput operation that reads blocks of data from the local bus and writes them to a SCSI
Session in addition to passing them along to the next local bus module to the right.

Sequence Syntax: #h1101,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1101,2,0,#h3004000

Description: The LBUS Eavesdrop operation puts the local bus chip into a mode in which each byte received
from the module to the left is copied into the VT2216A and is also passed to the next module to
the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
167

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Consume Pipe Continuous 1102

A throughput operation that writes some blocks of local bus data to a SCSI Session while passing
other blocks of local bus data to the next module to the right.

Sequence Syntax: #h1102,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1102,#h40002,0,#h3008000

Description: The LBUS Consume Pipe operation reads N blocks of data from the local bus and writes them to
a SCSI Session then passes M blocks to the next module to the right without copying those bytes
to the VT2216A. This operation is used for high data rate applications that require multiple
VT2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well as the
number of blocks to consume(N). This is accomplished by placing M in the most significant
16 bits of the <Count> field and N in the least significant 16 bits of the <Count> field. M and N
must have a greatest common denominator (cd) of ≤ 256 where the largest of M/cd and N/cd
is ≤ 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of bytes in
a local bus block. The upper 8 bits indicate the local bus width. The value indicating the local
bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
168

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Eavesdrop Pipe Continuous 1103

A throughput operation that writes some blocks of local bus data to a SCSI Session while passing
those blocks plus additional blocks of local bus data to the next module to the right.

Sequence Syntax: #h1103,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1103,#h20001,0,#h03004000

Description: The LBUS Eavesdrop Pipe operation reads N blocks of data from the local bus, writes them to a
SCSI Session and also passes them to the next module to the right. The operation then passes M
blocks to the next module to the right without copying them to the VT2216A. This operation is
used for high data rate applications that require multiple VT2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well as the
number of blocks to Eavesdrop (N). This is accomplished by placing M in the most significant
16 bits of the <Count> field and N in the least significant 16 bits of the <Count> field. M and N
must have a greatest common denominator (cd) of ≤ 256 where the largest of M/cd and N/cd
is ≤ 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of bytes in
a local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus determining when
the final Sequence count has been met. The number of bytes per block must be specified correctly
for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block.
Every local bus block is assumed to be the same size and equal
to the count specified here.

8 0
16 1
24 2
32 3
169

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Generate 2000

A playback operation that reads blocks of data from a SCSI Session then writes them to the local
bus.

Sequence Syntax: #h2000,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFC (see description below)

SCPI example: SEQ:ADD #h2000,16,0,#h03000c00

Description: The LBUS Generate operation causes data to flow from the SCSI Session to the next module to
the right of the VT2216A. This operation can only be used for local bus playback Sequences.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

A block marker is asserted on the local bus following every block-size number of bytes. A frame
marker is placed following the last block written to the local bus by this Sequence operation.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block
and must be a multiple of four. Every local bus block is assumed
to be the same size and equal to the count specified here.

8 0
16 1
24 2
32 3
170

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Append 2001

A playback operation that reads blocks of data from a SCSI Session then appends them to the
local bus stream of blocks.

Sequence Syntax: #h2001,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFC (see description below)

SCPI example: SEQ:ADD #h2001,4,0,#h03000800

Description: The LBUS Append operation causes data to flow from the SCSI Session and appends the data to
the end of an LBUS frame as it passes to the next module to the right of the VT2216A. This
operation can only be used for local bus playback Sequences.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes in a
local bus block; the upper 8 bits indicate the local bus width. The value indicating the local bus
width is presented as the number of bytes minus 1:

A block marker is asserted on the local bus following every block-size number of bytes. A frame
marker is placed following the last block written to the local bus by this Sequence operation.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter
A local bus width of: Is represented by a

parameter value of: This value represents the number of bytes in a local bus block
and must be a multiple of four. Every local bus block is assumed
to be the same size and equal to the count specified here.

8 0
16 1
24 2
32 3
171

Sequence Operations Reference
VT2216A Sequence Operations
Throughput A16 Buff 16 -
Throughput Shared RAM 3000-3012

Throughput operations that writes data from a memory buffer or FIFO to a SCSI Session.

Sequence Syntax: #h3000,<Count>,<Address>,<Misc>

through

#h3012,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

A16 <Address> ::= 0:#hFFFE

A24 <Address> ::= 0:#hFFFFFE

A32 <Address> ::= 0:#hFFFFFFFE

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h300B,#h10000,#hD420,0

Notes: See “Sequence Quick Reference” on page 145 for a list of all sixteen operations included in this
description.

Description: This description covers sixteen operations for which some essential properties are indicated in the
operation name. Buff indicates a memory buffer whereas FIFO refers to reading from the same
address as if reading from a FIFO. The buffer or FIFO corresponds to the address space specified
in the name: A16, A24, A32, or Shared RAM. The last part of the operation name refers to an
access type: a 16-bit access, a 32-bit access implemented as two 16-bit accesses or a D32 access.
The D32 access applies only to devices that support D32. Shared RAM is always accessed as a
16-bit buffer.

<Count> designates the number of bytes to transfer and must be a multiple of four.

<Address> designates an offset in the specified memory space (A16, A24, A32, or Shared RAM)
at which memory will be accessed. The value must be a multiple of 2.

<Misc> is not used.
172

Sequence Operations Reference
VT2216A Sequence Operations
Throughput Dummy Bytes 3100

A throughput operation that places dummy bytes in the data stream.

Sequence Syntax: #h3100,<Count>,<Address>,<Misc>

<Count> ::= 0:#hFFFFFFFC

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h3100,#h10000,0,0

Description: This operation is used to add padding to certain data structures in the data stream to make it
compatible with some post-processing programs that expect data in a certain location.

<Count> designates the number of dummy bytes to place in the data stream and must be a
multiple of four.

<Address> and <Misc> fields are not used.
173

Sequence Operations Reference
VT2216A Sequence Operations
Throughput Shared RAM Monitor Shared RAM -
Throughput A24 Buff D32 Monitor A24 Buff 3812-3a05

Throughput operations that perform a VXI bus throughput to a Session while providing a means
for the host computer to monitor the data.

Sequence Syntax: #h3812,<Count>,<Address>,<Misc>

through

#h3a05,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFF

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

Shared RAM <Address> ::= 0:262144

A24 <Misc> ::= 0:#hFFFFFF

Shared RAM <Misc> ::= 0:262144

SCPI example: SEQ:ADD #h3a00,#h200,#h400,#h8000

Note: See “Sequence Quick Reference” on page 145 for a list of all 27 operations included in this
description.

Description: This description covers 27 operations for which some essential properties are indicated in the
operation name:

The address location indicated in the operation name before the word ‘Monitor’ represents the
memory location from which to draw data. The address location indicated in the operation name
after the word ‘Monitor’ represents the memory location to which to monitor data.

Buff indicates a memory buffer whereas FIFO refers to reading from the same address as if
reading from a FIFO. The buffer or FIFO corresponds to the address space specified in the name:
A16, A24, A32, or Shared RAM.

<Count> is the number of bytes to monitor

<Address> is the VXI address from which to read data.

<Misc> is the VXI address to which to monitor data
174

Sequence Operations Reference
VT2216A Sequence Operations
Playback A16 Buff 16 -
Playback Shared RAM 4000-4012

Playback operations that write data from a SCSI Session to a memory buffer or FIFO.

Sequence Syntax: #h4000,<Count>,<Address>,<Misc>

through

#h4012,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

A16 <Address> ::= 0:#hFFFE

A24 <Address> ::= 0:#hFFFFFE

A32 <Address> ::= 0:#hFFFFFFFE

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h400B,#h10000,#hD420,0

Note: See “Sequence Quick Reference” on page 145 for a list of all sixteen operations included in this
description.

Description: This description covers sixteen operations for which some essential properties are indicated in the
operation name. Buff indicates a memory buffer whereas FIFO refers to writing to the same
address as if writing to a FIFO. The buffer or FIFO corresponds to the address space specified in
the name: A16, A24, A32, or Shared RAM. The last part of the operation name refers to an
access type: a 16-bit access, a 32-bit access implemented as two 16-bit accesses or a D32 access.
Shared RAM is always accessed as a 16-bit buffer.

<Count> designates the number of bytes to transfer and must be a multiple of four.

<Address> indicates an offset in the specified memory space (A16, A24, A32, or Shared RAM) at
which memory will be accessed. This value must be a multiple of 2.

<Misc> is not used.
175

Sequence Operations Reference
VT2216A Sequence Operations
Playback Bit Bucket 4100

A playback operation that discards bytes from the data stream.

Sequence Syntax: #h4100,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h4100,#h10000,0,0

Description: This operation can be used to playback a single channel from a multiple-channel throughput.

<Count> designates the number bytes to discard and must be a multiple of four.

<Address> and <Misc> are not used.
176

Sequence Operations Reference
VT2216A Sequence Operations
LBUS Consume Monitor Shared RAM -
LBUS Eavesdrop Pipe Monitor A24 5000-5017

Throughput operations that perform a local bus throughput to a Session while providing a means
for the host computer to monitor the data via the VXI system bus.

Sequence Syntax: #h5000,<Count>,<Address>,<Misc>

through

#h5017,<Count>,<Address>,<Misc>

Monitor <Count> ::= 1:256

Pipe Monitor <Count> ::= 1:256 1:256 (see description below)

A24 <Address> ::= 0:#hFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h5016,#h100004,#h400000,#h3008000

Note: See “Sequence Quick Reference” on page 145 for a list of all eight operations included in this
description.

Description: This description covers eight operations for which some essential properties are indicated in the
operation name:

• The part of the name preceding ‘Monitor’ indicates the type of throughput operation and the
description corresponds to the description for the same type of operation described earlier in
local bus throughput operations.

• In addition, the part of the name following ‘Monitor’ indicates the address space to which the
data will be monitored (Monitor Shared RAM or Monitor A24).

The following considerations apply to throughput operations with a Monitor:

• All monitored data is passed into a memory buffer, not into a FIFO.

• All monitoring to Shared RAM is performed via D16 accesses.

• The A16 and A32 address spaces are not supported for monitoring.

• D32 monitoring is not available.

<Count> and <Misc> for monitoring are the same as the <Count> and <Misc> fields for the
corresponding local bus throughput operations (1000-1003) described earlier.

<Address> indicates an offset in the specified memory space (A24 or Shared RAM). The
memory block at the offset specified in the address space is four bytes larger than the local bus
block size multiplied by the number of local bus blocks.

The following tips are applicable to running Sequences using Monitor:

• The act of monitoring a local bus transfer slows down the overall throughput rate because data
must be copied to RAM, which would not otherwise be done. The more data monitored, the
slower the maximum throughput rate.

• All local bus blocks must be specified that are to be monitored before running the Sequence.
Once the Sequence is running, it is not possible to change which blocks to monitor.
177

Sequence Operations Reference
VT2216A Sequence Operations
• Flags are used to synchronize the host and the VT2216A for monitor operations. The flags are
represented by the first four bytes of the memory to which Monitor data is being written,
beginning at the address specified in that memory (A24 or Shared RAM). All the flag values
must be initialized before running the Sequence. The flag is used to indicate the presence of
data in the Monitor block. When the flag is 0, the VT2216A will write data into the block and
set the flag to 1. It is expected that the host (or controller) will read the data and then set the
flag to 0. If the monitor operation is executed with the flag non-zero, the memory copy will
not be done, but the data will flow through the normal data stream to the SCSI Session. This
allows the host to read data at a different rate than the actual acquisition of data without
affecting the throughput rate. In fact, throughputs will be faster when the flag is set because
the memory copy will not need to be done.

The intention of monitoring many channels is that there will be a Sequence operation to
monitor one block for each of the many channels. The flag values will initially be set to non-
zero which means that no data will be copied to memory. When monitoring other local bus
blocks is desired, the flag can be cleared, allowing data to be written to that monitor block.
Upon seeing the 0 flag, the VT2216A will write data to that block and then set the flag
indicating that a block of data is available. This scheme allows for changing which local bus
blocks are being monitored during the throughput.
178

Sequence Operations Reference
VT2216A Sequence Operations
Wait Bit Set A16 -
Wait Bit Clear Shared RAM 6000-6007

Synchronization operations that can be used to wait for data to be available from a device that
generates data slower than the VT2216A can transfer it.

Sequence Syntax: #h6000,<Count>,<Address>,<Misc>

through

#h6007,<Count>,<Address>,<Misc>

<Count> ::= 0:#b1111111111111111

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h6002,0,#h380024,#b1000

Note: See “Sequence Quick Reference” on page 145 for a list of all eight operations included in this
description.

Description: These operations wait for a single bit or a group of bits to be set or cleared in another device. This
description covers eight operations for which some essential properties are indicated in the
operation name. Each reference is to a 16-bit value and performs a D16 access to the memory
location specified. Both the memory space referenced and whether to wait for the bit(s) to be set
or cleared are indicated in the name of the operation.

<Count> specifies a bit mask that is AND’ed with the 16-bit register specified by the memory
offset and memory space. For the Set operations, all bits in the mask must be set. For the Clear
operations, all bits in the mask must be clear. The VT2216A reads this register and checks the
bits until the condition is met. If the condition is never met the Sequence will not be completed.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> represents a user-programmable delay prior to the next VXI access. The number of loops
specified here is performed before another VXI access. This frees the VXI bus to perform
additional activities, rather than having Sequence operations completely dominate VXI bus usage.
Loop time is approximately 3 µs.
179

Sequence Operations Reference
VT2216A Sequence Operations
Wait A16 Count16 -
Wait Count Shared RAM 32 6008-600f

Synchronization operations that can be used to wait for data to be available from a device that
generates data slower than the VT2216A can transfer it.

Sequence Syntax: #h6008,<Count>,<Address>,<Misc>

through

#h600f,<Count>,<Address>,<Misc>

16 bit <Count> ::= 1:#hFFFF

32 bit <Count> ::= 1:#hFFFFFFFF

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h600B,#h4000,128000,0

Note: See “Sequence Quick Reference” on page 145 for a list of all eight operations included in this
description.

Description: These operations wait for the count register in another device to be greater than the value
specified by <Count>. This description covers eight operations for which some essential
properties are indicated in the operation name. The memory space referenced is indicated in the
name of the operation (A16, A24, A32, or Shared RAM). The count register may be a 16-bit or a
32-bit value as indicated by the name of the operation, but all accesses are done using D16 (a 32-
bit count will be performed by using two 16-bit accesses).

<Count> specifies the number that must be met or exceeded before proceeding. The VT2216A
reads this register and checks the count until the condition is met. If the condition is never met,
the Sequence will not be completed.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> represents a user-programmable delay prior to the next VXI access. The number of loops
specified here is performed before another VXI access. This frees the VXI bus to perform
additional activities, rather than having Sequence operations completely dominate VXI bus usage.
Loop time is approximately 3 µs.
180

Sequence Operations Reference
VT2216A Sequence Operations
Wait FIFO Empty
Wait FIFO Half Empty 6010-6011

The Sequence stops executing until data in the VT2216A FIFO has been depleted.

Sequence Syntax: #h6010,<Count>,<Address>,<Misc>

and

#h6011,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h6010,0,0,0

Description: These operations wait for the VT2216A FIFO (131072 bytes in size) to be either half or
completely empty. These operations may be used to synchronize with a device that does not have
a FIFO but is able to burst large amounts of data very quickly. In this case, it is necessary to wait
for the VT2216A FIFO to be (half) empty before reading data from the device.

As an example, these operations may be necessary to synchronize with the Agilent/HP E1485C in
conjunction with a Control Register operation.
181

Sequence Operations Reference
VT2216A Sequence Operations
Control A16 Reg 16 -
Control Reg Shared RAM 32 6018-601f

Synchronization operations that allow the VT2216A to write directly to a memory location.

Sequence Syntax: #h6018,<Count>,<Address>,<Misc>

through

#h601F,<Count>,<Address>,<Misc>

<Count> ::= 0

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= #h0:FFFFFFFF

SCPI example: SEQ:ADD #h601A,0,#h2D860860,#hF020

Note: See “Sequence Quick Reference” on page 145 for a list of all eight operations included in this
description.

Description: These operations allow the VT2216A to write to a memory location, usually for the purpose of
controlling another device on the bus. The register can be either 16-bits wide or 32-bits wide (a
32-bit register is written as two D16-bit writes). The memory space and register width are
indicated in the Sequence name.

<Count> is not used.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> contains the value that is to be written to the memory location specified by the memory
space and the memory offset in the <Address> field.
182

Sequence Operations Reference
VT2216A Sequence Operations
Dump A24 Seq Bytes -
Dump Shared RAM Seq Bytes 6020-6022

Writes to a memory space the number of bytes that have been transferred.

Sequence Syntax: #h6020,<Count>,<Address>,<Misc>

through

#h6022,<Count>,<Address>,<Misc>

<Count> ::= 0

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h6022,0,#h100,0

Note: See “Sequence Quick Reference” on page 145 for a list of all three operations included in this
description.

Description: During both throughput and playback Sequences an internal counter keeps a count of how many
bytes have been transferred. The contents of this counter may be written to a memory space in
order to monitor progress of a Sequence.

<Address> indicates the offset into the memory space indicated in the operation name.

<Count> and <Misc> are not used.
183

Sequence Operations Reference
VT2216A Sequence Operations
184

Programming Using SCPI

Programming Using SCPI
Getting Started

SCPI (Standard Commands for Programmable Instruments) is an industry-standard instrument
control language. SCPI builds on the IEEE 488.1 and 488.2 standards.

Message-based VXI devices

SCPI Command Structure and Format

SCPI organizes related functions by grouping them together on a common branch of a command
tree. Each branch is assigned a keyword to indicate the nature of the related functions. For
example, the functions that control and monitor the status registers are grouped under the
STATUS branch of the command tree. The STATUS branch is only one of the major SCPI
branches that are called subsystems.

Colons indicate branching points on the command tree. A parameter is separated from the rest of
the command by a space.

Multiple commands can be sent within a single message by separating commands with
semicolons. One of the main functions of the command parser is to keep track of a program
message’s position in the command tree. If a program message contains two commands separated
by a semicolon, the command parser assumes that the keywords of the second command come
from the same branch of the tree as the final keyword of the preceding command. In this manner,
multiple command program messages can be simplified.

Another way to simplify program messages is to delete implied mnemonics. Some keywords can
be omitted from the command without changing the effect of the command. Implied mnemonics
are identified by brackets [] in SCPI syntax diagrams.

The illustration below describes the basic syntax of SCPI commands.

: keyword <WSP> parameter

:

?
NOTE:
 WSP = whitespace. ASCII character (Decimal 0-9 or 11-32)

,

186

Programming Using SCPI
Parameter Settings

As the illustration shows, there must be a <WSP>, whitespace or <space>, between the last
command keyword and the first parameter in a command. This is one of the few places in SCPI
where <space> is required. If more than one parameter is sent with a single command, a comma
must separate the adjacent parameters.

Each parameter format has one or more corresponding response-data formats. For example, a
setting programed using a numeric parameter would return either floating point or integer
response data when queried. Whether floating point or integer response data is returned, depends
on the particular VXI module being used. However, response data is clearly defined for the
module and query. The next chapter, “SCPI Command Reference ” specifies the data format for
individual commands.
187

Programming Using SCPI
Using the Status Registers
Using the Status Registers

The VT2216A’s status registers contain information about various module conditions. The
following sections describe the registers and explains how to use them in programs.

The General Status Register Model

The general status register model, shown below, is the building block of the VT2216A’s status
system. Most register sets in the module include all of the registers shown in the general model,
although commands are not always available for reading or writing a particular register. The
model consists of a condition register, two transition registers, an event register and an enable
register.

The flow within a status group starts at the condition register and ends at the register summary bit.
(See the illustration below.) Flow is controller by altering bits in the enable and transition
registers.

The Operation Status and Questionable Status groups are 16 bits wide, while the Status Byte and
Standard Event groups are 8 bits wide. In the 16-bit groups, the most significant bit (bit 15) is not
used. Bit 15 is always set to 0.

Bit Name

Bit 0
Bit 1

Bit 2

Bit Number

Condition
Register

Transition
Registers

Event
Register

Enable
Register Logical OR

Summary
Bit

0
1

2

Condition
Register

Bit 0

Transition
Registers

Bit 0

Event
Registers

Bit 0

Enable
Registers

Bit 0

(Event Register latches
changes in the
Condition Register)

Bit 0

Logical AND

Logical OR

Summary
Bit

... Bit 2

... Bit 1
188

Programming Using SCPI
Using the Status Registers
Condition Register

The condition register continuously monitors hardware and firmware status. It represents the
current state of the module. It is updated in real time. When the condition monitored by a
particular bit becomes true, the bit is set to 1. When the condition becomes false, the bit is reset
to 0. Condition registers are read-only.

If there is no command to read a particular condition register, it is simply transparent.

The Transition Registers

The positive and negative transition registers specify which type of bit transition in the Condition
register will set corresponding bits in the Event register. Transition register bits may be set for
positive transitions (0 to 1) or negative transitions (1 to 0).

Each bit set in the negative transition register indicates that a 1 to 0 transition of that bit in the
Condition register sets the associated bit in the Event register. Each bit set in the positive
transition register indicates that a 0 to 1 transition of that bit in the Condition register sets the
associated bit in the Event register. Setting the same bits in both the positive and negative
transition registers indicates that any transition of those bits in the Condition register sets
corresponding bits in the Event register.

Event Register

The event register records condition changes. When a change occurs in the condition register, the
corresponding event bit is set to 1 in accordance with the transition register settings. Once set, an
event bit is no longer affected by condition changes and subsequent events corresponding to that
bit are ignored. The event bit remains set until the event register is cleared— either when the
register is read or when the *CLS (clear status) command is sent. Event registers are read-only.

Note Reading the Event Register, clears the Event Register.

Enable Register

The enable register specifies which bits in the event register set a summary bit to 1. The module
logically ANDs corresponding bits in the event and enable registers and OR’s all the resulting bits
to determine the state of a summary bit. Summary bits are in turn recorded in the Status Byte.
(The summary bit is only set to 1 if one or more enabled event bits are set to 1.) Enable registers
are read-write.

Enable registers are cleared by *CLS (clear status). Querying enable registers does not affect
them. There is always a command to read and write to the enable register of a particular register
set.

How to Use Registers

There are two methods which can be used to access the information in register sets:

• The polling method

• The service request (SRQ) method

Use the polling method when:

• The language/development environment does not support SRQ interrupts.
189

Programming Using SCPI
Using the Status Registers
• A simple, single-purpose program is desured and the added complexity of setting up an SRQ
handler is not.

Use the SRQ method when:

• Time-critical notification of changes are needed.

• Monitoring more than one device that supports SRQ.

• Having the controller do something else while it is waiting is needed.

• The performance penalty inherent to polling cannot be afforded.

The Polling Method

In the polling method, the module has a passive role. It only tells the controller that conditions
have changed when the controller asks the right question. In the SRQ method, the module
notifies the controller of a condition change without the controller asking. Either method allows
one or more conditions to be monitored.

When monitoring a condition with the polling method, one must:

1. Determine which register contains the bit that monitors the condition.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

The polling method works well if it is not necessary to know about changes the moment they
occur. The SRQ method is more effective if knowing when a condition changes immediately is a
must. To detect a change in a condition using the polling method, a program would need to
continuously read the registers at very short intervals, which makes the program less efficient. In
this case, it is better to use the SRQ method.

The SRQ Method

When monitoring a condition with the SRQ method, one must:

1. Determine which bit monitors the condition.

2. Determine how that bit reports to the request service (RQS) bit of the Status Byte.

3. Send SCPI commands to enable the bit that monitors the condition and to enable the summary
bits that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the module sets its RQS bit and generates an SRQ. The controller is
informed of the change as soon as it occurs. The time the controller would otherwise have used to
monitor the condition can now be used to perform other tasks. The program determines how the
controller responds to the SRQ.

Generating a Service Request

To use the SRQ method, it is necessary to understand how service requests are generated. As
shown below, other register sets in the module report to the Status Byte. Many of them report
directly, but some may report indirectly.
190

Programming Using SCPI
Using the Status Registers
Bit 6 of the Status Byte serves two functions: the request service function (RQS) and the master
summary status function (MSS). The RQS bit changes whenever something changes that it is
configured to report. The RQS bit is cleared when it is read with a serial poll. The MSS bit is set
in the same way as the RQS bit. However, the MSS bit is cleared only when the condition that set
it is cleared. The MSS bit is read with *STB?.

When a register set causes its summary bit in the Status Byte to change from 0 to 1, the module
can initiate the service request (SRQ) process. However, the process is only initiated if both of
the following conditions are true:

• The corresponding bit of the Service Request enable register is also set to 1.

• The module does not have a service request pending. (A service request is considered to be
pending between the time the module’s SRQ process is initiated and the time the controller
reads the Status Byte register with a serial poll.)

The SRQ process generates an SRQ. It also sets the Status Byte’s request service (RQS) bit to 1.
Both actions are necessary to inform the controller that the module requires service. Generating
an SRQ only informs the controller that some device on the bus requires service. Setting the RQS
bit allows the controller to determine which device requires service. That is, it tells the controller
that this particular device requires service.

If the program enables the controller to detect and respond to service requests, it should instruct
the controller to perform a serial poll of all modules when an SRQ is generated. Each device on
the bus returns the contents of its Status Byte register in response to this poll. The device whose
RQS bit is set to 1 is the device that requested service.

Note When reading the module’s Status Byte with a serial poll, the RQS bit is reset to 0. Other bits in
the register are not affected.

From other
register sets

Service
Request
(SRQ)

Service
Request
Process

Status Byte
Register

Service
Request
Enable

Register

MSSRQS

0

1

2

3

4

5

7

X

Lo
gi

ca
l O

R

191

Programming Using SCPI
The VT2216A Registers Sets
The VT2216A Registers Sets

The VT2216A uses four register sets to keep track of the module’s status:

• Status Byte

• Questionable Status

• Standard Event

• Operational Status

Their reporting structure is summarized in the illustration below. They are described in greater
detail in the following sections.

Register bits not explicitly presented in the following sections are not used in the VT2216A. A
query to one of these bits returns a value of 0.

Figure 29 VT2216A Register Sets

Questionable Status

Lo
gic

al
OR

Output Queue

Status Byte

Message Available

Standard Event

Operation Status

Lo
gic

al
OR

Lo
gic

al
OR

0
1
2
3
4
5
6
7

0
1
2
3
4
5
X
7

Lo
gic

al
OR
192

Programming Using SCPI
The VT2216A Registers Sets
Status Byte

The Status Byte summarizes the states of the other register sets and monitors the VT2216A’s
output queue. It is also responsible for generating service requests (see Generating a Service
Request on page 190).

The Status Byte is unique because it does not exactly conform to the general status model
presented earlier. It contains only two registers: the Status Byte register and the Service Request
Enable register. The Status Byte registers behaves like a condition register for all bits except
bit 6. The Service Request enable behaves like a standard enable register except that bit 6 is
always set to 0.

Bits in the Status Byte register are set to 1 under the following conditions:

• Questionable Status Summary (bit 3) is set to 1 when one or more enabled bits in the
Questionable Status event register are set to 1.

• Message Available (bit 4) is set to 1 when the output queue contains a response message.

• Standard Event Summary (bit 5) is set to 1 when one or more enabled bits in the Standard
Event event register are set to 1.

• Master Summary Status (bit 6, when read by *STB?) is set to 1 when one or more enabled bits
in the Status Byte register are set to 1.

• Request Service (bit 6, when read by serial poll) is set to 1 by the service request process (see
Generating a Service Request on page 190).

• Operation Status Summary (bit 7) is set to 1 when one or more enabled bits in the Operation
Status event register are set to 1.

The illustration also shows the commands used to read and write to the Status Byte registers. The
following statements are example commands using the Status Byte and Status Byte enable
register.

*SRE 16 Generate an SRQ interrupt when messages are available in the output
queue.

*SRE? Find out what events are enabled to generated SRQ interrupts.

*STB? Read the Status Byte event register.

See Setting and Querying Registers on page 196 for more information about these commands.

MSS

Serial poll (bit 6 = Request Service)

Bit Weights

Request Service/Master Summary Status

*STB? (bit 6 = Master Summary Status)

*SRE

RQS

0

1

2

3

4

5

7

X

Lo
gi

ca
l O

R

0

1

2

3

4

5

7

X

Standard Event Summary

Message Available

Questionable Status Summary

Operational Status Summary

8

16

32

128

1

2

4

193

Programming Using SCPI
The VT2216A Registers Sets
Questionable Status Register Set

The Questionable Status register monitors conditions that affect the quality of the data transfer.

This register set includes a condition register, two transition registers, an event register and an
enable register. It is accessed through the STATUS subsystem. See Setting and Querying
Registers on page 196 for more information about using these commands.

The Condition Register

Bits in the Questionable Status condition register are set to 1 under the following conditions:

• Sequence Error (bit 8) is set to 1 when an error is detected during Sequence execution

• Session I/O Error (bit 9) is set to 1 when an error is detected during Session I/O operation

The illustration shows the commands used to read and write to the Questionable Status registers.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

194

Programming Using SCPI
The VT2216A Registers Sets
Standard Event Status Register Set

The Standard Event Status register set monitors module errors as shown below. It is one of the
simplest and most frequently used. The unique aspect of this group is that it is programed by
using common commands, while other register sets are programed through the STATUS
subsystem.

The Standard Event Status Register set does not conform to the general status register model
described at the beginning of this chapter. It contains only two registers: the Standard Event
Status Event register and the Standard Event Status Enable register.

Bits in the Standard Event Status event register are set to 1 under the following conditions:

• Operation Complete (bit 0) is set to 1 when the following two events occur (in the order
listed):

• The *OPC command is sent to the module.

• The module completes all pending overlapped commands.

• Query Error (bit 2) is set to 1 when the module detects a query error.

• Device Dependent Error (bit 3) is set to 1 when the command parser or execution routines
detect a device-dependent error.

• Execution Error (bit 4) is set to 1 when the command parser or execution routines detect an
execution error.

• Command Error (bit 5) is set to 1 when the command parser detects a command or syntax
error.

• Power On (bit 7) is set to 1 when the module is turned on.

The illustration also shows the commands used to read and write to the Standard Event Status
register sets. Example commands using Standard Event Status registers:

*ESE 48 Generate a summary bit whenever there is an execution or command error

*ESE? Query the state of the Standard Event Status enable register?

*ESR? Query the state of the Standard Event Status event register.

See Setting and Querying Registers on page 196 for more information about using these
commands.

*ESR?

Lo
gic

al
OR

0
1
2
3
4
5
X
7

0
1
2
3
4
5
6
7

Bit Weights *ESE

Operation Complete
Request Control

Query Error
Device Dependent Error

Execution Error
Command Error

Power On

Bit 5
Status Byte

1

4
8
16
32

128
195

Programming Using SCPI
The VT2216A Registers Sets
Operation Status Register Set

The Operation Status register set monitors conditions in the module’s data transfer process.

This register set includes a condition register, two transition registers, an event register and an
enable register. It is accessed through the STATUS subsystem. See Setting and Querying
Registers on page 196 for more information about using these commands.

Bits in the Operation Status condition register are set to 1 under the following conditions:

• Sequence in Progress (bit 4) is set to 1 while a Sequence is in progress and to 0 when the
Sequence has finished.

• Waiting for TRIG (bit 5) is set to 1 when the module is ready to accept a trigger signal from
one of the trigger sources. (If a trigger signal is sent before this bit is set, the signal is
ignored.)

• Session in Progress (bit 8) is set to 1 while a Session is in progress and to 0 when a Session is
has finished.

The illustration shows the commands used to read and write to the Operation Status registers.

Setting and Querying Registers

The previous register set illustrations include the commands used to read from and to write the
registers. Most commands have a set form and a query form.

Use the set form of the command to write to a register. The set form is shown in the illustrations.
The set form of a command takes an extended numeric parameter.

Use the query form of the command to read a register. Add a “?” to the set form to create the
query form of the command. Commands ending with a “?” in the illustrations are query-only
commands. These commands cannot set the bits in the register, they can only query or read the
register.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

Sequence in progress
Waiting for TRIG
196

Programming Using SCPI
The VT2216A Registers Sets
The register set illustrations also include the bit weights used to specify each bit in the register.
For example, to get the Waiting for Trigger condition register (bit 5 in Operation Status register
set) to generate a service request, send the following commands:

STATUS:PRESET Sets the Enable register bits in the Operational Status and the Questionable
Status register sets to 0.

STATUS:OPERATION:ENABLE 32 Sets the Waiting for Trigger Enable register (bit 5) to 1.

*SRE 128 Sets bit 7 of the Service Request Enable register to 1.

See the next chapter for more information about these commands.

VT2216A Register Set Summary

Lo
gic

al
OR

0
1
2

4
5
6
7

0
1
2
33
4
5
X
7

Status Byte

Questionable Status
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14

Operation Status

Sequence Error
Session I/O Error

Output Queue

Message Available

Standard Event
Operation Complete

Query Error
Device Dependent Error

Execution Error
Command Error

Power On

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Sequence in Progress
Waiting for TRIG

Session in Progress
197

Programming Using SCPI
Addressing the VT2216A
Addressing the VT2216A

The VT2216A address in a SCPI environment consist of three parts; an interface select code, the
primary address and the secondary address.

The interface select code specifies the interface. Seven is a typical number for the GPIB
interface.

The primary address, typically 09, indicates which GPIB port in the system controller is used to
communicate with the Slot 0 Control Module, for example the Agilent/HP E1406A.

The secondary address indicates the device-specific address. In this case, it represents the VXI
logical address.

The VXI logical address ranges in value from 1 to 255. For use with a command module, the
logical address to the GPIB cannot be used directly, but must be encoded into the GPIB secondary
address. In addition, the logical address of the VT2216A must be a multiple of eight, not
including 0.

If the logical address is 8, the GPIB secondary address is encoded to 1. If the logical address is
40, the secondary address is encoded to 5. In these examples, the GPIB address is 70901 and
70905.

Software running in a computer writing to a Slot 0 Control Module needs to use all three
addresses: the select code, the primary GPIB address and the secondary address.

If a command module is not used, but rather another type of controller such as MXI, V382, or
V743, the divide by 8 restriction for the VXI logical address does not apply and any logical
address from 1 to 255 may be used.
198

SCPI Command Reference

SCPI Command Reference
Message-based VXI devices

The Command Reference chapter describes all of the VT2216A’s SCPI commands. Each
command has the following:

1. The heading. This includes two fields. The field to the left shows the command name. The
field to the right indicates whether the command has a command form, a query form, or both.

2. A brief description of the command. This one- or two-line description appears just below the
heading.

3. A syntax description. This may consist of one or two parts: only a command syntax, only a
query syntax or both. The syntax description shows the syntax expected by the command
parser. A detailed description for the elements appearing in the syntax description follows.

4. Example statements. This field appears at the end of the syntax description. It contains two
examples of BASIC output statements that use the command.

5. A return format description. This field is only used if the command has a query form. It
describes how data is returned in response to the query.

6. An attribute summary. This field defines the command’s preset state, identifies overlapped
commands requiring synchronization and specifies compliance with SCPI. A “confirmed”
command complies with SCPI 1994.

7. A detailed description. This field contains additional information about the command.
200

SCPI Command Reference
Finding the Right Command

• If a command cannot be found where it is expected, try scanning the VT2216A SCPI Quick
Reference tables that begin on page 204 for the equivalent command that contains the implied
mnemonic.

Each command has a brief description. After equivalent command is located, a more detailed
description in the command reference can be found.

• If searching for a command that accesses a particular function, use the index.

For example, to find the commands that open or close a Transfer Unit, look for “transfer unit”
in the index. It lists the pages that describe the MMEMory:TUNit[1|2|...|15]:OPEN and
MMEMory:TUNit[1|2|...|15]:CLOSe commands.
201

SCPI Command Reference
Command Syntax

This section describes the syntax elements used in the SCPI command reference. It also describes
the general syntax rules for both kinds of command and query messages.

Special Syntactic Elements

Several syntactic elements have special meanings:

• colon (:) — When a command or query contains a series of keywords, the keywords are
separated by colons. A colon immediately following a keyword tells the command parser that
the program message is proceeding to the next level of the command tree. A colon
immediately following a semicolon tells the command parser that the program message is
returning to the base of the command tree.

• semicolon (;) — When a program message contains more than one command or query, a
semicolon is used to separate them from each other. For example, to set up Session devices to
begin at a specified block number and then start a measurement using one program message,
the message would be:
MMEMory:SESSion2:SEEK 8191;:SEQuence:BEGin VPL,262144,1

• comma (,) — A comma separates the data sent with a command or returned with a response.
For example, the SEQuence:BEGin command requires three values to determine the
destination, size and data source of a Sequence that is to be executed. For example, a message
to begin a playback to the local bus of 8388608 bytes from Session 3 would be:
SEQuence:BEGin LPL,8388608,3

• <WSP> — One white space is required to separate a program message (the command or
query) from its parameters. For example, the command “SEQuence:BEGin VPL,262144,1”
contains a space between the program header (SEQuence:BEGin) and its program data
(VPL,262144,1). White space characters are not allowed within a program header.
202

SCPI Command Reference
Conventions

Syntax and return format descriptions use the following conventions:

• < > Angle brackets enclose the names of items that need further definition. The definition
will be included in accompanying text. In addition, detailed descriptions of these elements
appear at the end of this section.

• ::= “is defined as” When two items are separated by this symbol, the second item replaces the
first in any statement that contains the first item. For example, A::=B indicates that B replaces
A in any statement that contains A.

• | “or” When items in a list are separated by this symbol, one and only one of the items can be
chosen from the list. For example, A|B indicates that A or B can be chosen, but not both.

• ... An ellipsis (trailing dots) is used to indicate that the preceding element may be repeated one
or more times.

• [] Square brackets indicate that the enclosed items are optional.

• { } Braces are used to group items into a single syntactic element. They are most often used
to enclose lists and to enclose elements that are followed by an ellipsis.

Although the command interpreter is not case sensitive, the case of letters in the command
keyword is significant in the Command Reference. Keywords that are longer than four characters
can have a short form or a long form. SCPI accepts either form. Upper-case letters show the
short form of a command keyword.

SCPI is sensitive to white space characters. White space characters are not allowed within
command keywords. They are only allowed when they are used to separate a command and a
parameter.

A message terminator is required at the end of a program message or a response message. Use
<NL>, <^END> or <NL> <^<END> as the program message terminator. The word <NL> is an
ASCII new line (line feed) character. The word <^END> means that End or Identify (EOI) is
asserted on the GPIB interface at the same time the preceding data byte is sent. Most
programming languages send these terminators automatically. For example, if using the BASIC
OUTPUT statement, <NL> is automatically sent after the last data byte. If using a PC, one can
usually configure the system to send whatever terminator is specified.

Syntax Descriptions

Syntax descriptions in the SCPI command reference chapter use the following elements:

<CHAR> This item designates a string of ASCII characters. There are no delimiters. Usually,
the string is from an explicit set of responses. Maximum length is twelve characters.

<STRING> This item specifies any 8-bit characters delimited by single quotes or double quotes.
The beginning and ending delimiter must be the same. If the delimiter character is within the
string, it must be entered twice. (For example, to get “EXAMPLE”, enter ""EXAMPLE"").
203

SCPI Command Reference
VT2216A SCPI Quick Reference
VT2216A SCPI Quick Reference

Command Description Page

Common Commands

*CLS Clears the Status Byte 207

*ESE Sets or queries bits in the Standard Event Status
enable register

208

*ESR? Reads and clears the Standard Event Status event
register

209

*IDN? Returns module’s identification string 210

*OPC Enables status bit or query completion of all pending
overlapped commands

211

*RST Executes a device reset 212

*SRE Sets or queries bits in the Service Request enable
register

213

*STB? Reads the Status Byte register 214

*TST? Performs selftest 215

*WAI Wait-to-continue command 216

Local Bus Configuration

LBUS:READ:BUFFer Transfers data from the module to the left of the
VT2216A to a memory buffer

224

LBUS:WRITe:BUFFer Transfers data from a memory buffer to the module to
the right of the VT2216A

225

VINStrument[:CONFigure]:LBUS [:MODE]
RESet|NORMal|PIPE

Configures the local bus 269

VINStrument:LBUS:RESet Resets the VT2216A local bus 270

Mass Memory Control

MMEMory:SCSI[1|2|...|30]:BSIZe? Returns the number of bytes in a logical block of an
open SCSI device

226

MMEMory:SCSI[1|2|...|30]:CAPacity? Returns the number of logical blocks on an open SCSI
device

231

MMEMory:SCSI[1|2|...|30]:CLOSe Closes a SCSI device 232

MMEMory:SCSI[1|2|...|30]:EBYPass
[:STATe]

Sets or queries erase bypass mode of certain magneto-
optical disks

233
204

SCPI Command Reference
VT2216A SCPI Quick Reference
MMEMory:SCSI[1|2|...|30]:ERASe Erases blocks on certain magneto-optical disks 234

MMEMory:SCSI[1|2|...|30]:OPEN Opens a SCSI device 235

MMEMory:SESSion[1|2|...|12]:ADD Adds a Transfer Unit to a SCSI Session 238

MMEMory:SESSion[1|2|...|12]:COPY Copies data from one SCSI Session to another 239

MMEMory:SESSion[1|2|...|12]:DELete:ALL Deletes all Transfer Units from the specified SCSI
Session

240

MMEMory:SESSion[1|2|...|12]:READ:BUFF
er

Reads data from a Session into a memory buffer 241

MMEMory:SESSion[1|2|...|12]:READ:FIFO Reads data from a SCSI Session into a FIFO 242

MMEMory:SESSion[1|2|...|12]:SEEK Locates a specific logical block in a Session 243

MMEMory:SESSion[1|2|...|12]:SIZE? Returns the number of Transfer Units in the Session 244

MMEMory:SESSion[1|2|...|12]:WRITe:BUFF
er

Writes data to a SCSI Session from a memory buffer 245

MMEMory:SESSion[1|2|...|12]:WRITe:FIFO Writes data to a SCSI Session from a FIFO 246

MMEMory:TUNit[1|2|...|15]:CLOSe Closes an open Transfer Unit 247

MMEMory:TUNit[1|2|...|15]:OPEN Opens a Transfer Unit 248

Sequence Operations

SEQuence[1|2|3|4]:ADD Appends an operation to the specified Sequence 249

SEQuence[1|2|3|4]:BEGin Begins a Sequence for data transfer 250

SEQuence[1|2|3|4]:DELete:ALL Removes all operations from the specified Sequence
list

251

SEQuence[1|2|3|4]:SIZE? Returns the number of elements in the Sequence 252

SEQuence[1|2|3|4]:TRANsferred? Returns the number of bytes transferred in the
Sequence

253

Status Reporting

STATus:OPERation:CONDition? Reads the Operation Status condition register 254

STATus:OPERation:ENABle Sets and queries bits in the Operation Status enable
register

255

STATus:OPERation[:EVENt]? Reads and clears the Operation Status event register 256

STATus:OPERation:NTRansition Sets and queries bits in the Operation Status negative
transition register

257

STATus:OPERation:PTRansition Sets and queries bits in the Operation Status positive
transition register

258

STATus:PRESet Sets bits in most enable and transition registers to the
default state

259

STATus:QUEStionable:CONDition? Reads the Questionable Status condition register 260

STATus:QUEStionable:ENABle Sets and queries bits in the Questionable Status enable
register

261

Command Description Page
205

SCPI Command Reference
VT2216A SCPI Quick Reference
STATus:QUEStionable[:EVENt]? Reads and clears the Questionable Status event
register

262

STATus:QUEStionable:NTRansition Sets and queries bits in the Questionable Status
negative transition register

263

STATus:QUEStionable:PTRansition Sets and queries bits in the Questionable Status
positive transition register

264

System Control

SYSTem:ABORt Aborts a data transfer Session and/or Sequence 265

SYSTem:COMMunicate:SCSI[:SELF]:ADDR
ess

Changes the module’s SCSI bus controller address 266

SYSTem:ERRor? Returns one error message from the module’s queue 267

SYSTem:VERSion? Returns the SCPI version to which the module complies 268

Diagnostics

DIAGnostic:BOARd:MAIN? Tests the Main PC board 217

DIAGnostic:BOARd:SCSI? Tests the SCSI PC board 218

DIAGnostic:LBUS:CONSume? Tests the local bus data transfer to module 219

DIAGnostic:LBUS:GENerate? Tests the local bus data transfer from module 220

DIAGnostic:SCSI:DAT? Tests DAT at specific SCSI bus/address 221

DIAGnostic:SCSI:DEVices? Tests the interface for a specific SCSI controller 222

DIAGnostic:SCSI:DISK? Tests disk at specific SCSI bus/address 223

The following commands are provided for backward compatibility with models Agilent/HP E1562A/B/C (which
use HP-manufactured disk drives) and application software designed to support them. Their behavior for the
non-HP-manufactured disk drives used in the VT2216A or for non-HP- manufactured disk drives supplied by
the customer are described in the command descriptions on the following pages.

MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO Sets or queries the Auto Head Calibration Mode of an
open SCSI device

227

MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMe
diate]

Performs head calibration on an open SCSI device 229

MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? Returns the time until the next head calibration 230

MMEMory:SCSI[1|2|...|30]:TEMPerature? Returns drive temperature 237

Command Description Page
206

SCPI Command Reference
VT2216A SCPI Commands
VT2216A SCPI Commands

*CLS command

Clears the Status Byte by emptying the error queue and clearing all event registers.

Command Syntax: *CLS

Example Statements: OUTPUT 70918;":*CLS"
OUTPUT 70918;"*cls"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command clears the Status Byte register. It does so by emptying the error queue and clearing
(setting to 0) all bits in the event registers of the following register sets:

• Questionable Status

• Standard Event

• Operation Status

In addition, *CLS cancels any preceding *OPC command or query. This ensures that bit 0 of the
Standard Event register will not be set to 1 and that a response will not be placed in the
instrument’s output queue when pending overlapped commands are completed.

*CLS does not change the current state of enable registers or transition filters.

Note To guarantee that the Status Byte’s Message Available and Master Summary Status bits are
cleared, send *CLS immediately following a Program Message Terminator.

 For more information on the Status Byte register, see “The VT2216A Registers Sets” on page
192.
207

SCPI Command Reference
VT2216A SCPI Commands
*ESE command/query

Sets or queries bits in the Standard Event Status enable register.

Command Syntax: *ESE <Mask>

<Mask>::=number
limits: 0:255

Example Statements: OUTPUT 70918;"*ese 1"
OUTPUT 70918;"*ESE 60"

Query Syntax: *ESE?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows one to set bits in the Standard Event Status enable register. Assign a
decimal weight to each bit that is to be set (to 1) according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7. Add the weights and then send the sum
with this command.

When an enable register bit is set to 1, the corresponding bit of the Standard Event Status event
register is enabled. All enabled bits are logically ORed to create the Standard Event Status
summary, which reports to bit 5 of the Status Byte. Bit 5 is only set to 1 if both of the following
are true:

• One or more bits in the Standard Event Status event register are set to 1.

• At least one set bit is enabled by a corresponding bit in the Standard Event Status enable
register.

The query returns the current state of the Standard Event Status enable register. The state is
returned as a sum of the decimal weights of all set bits.

For more information on the Standard Event Status register set, see the “VT2216A Register Set
Summary” on page 197.
208

SCPI Command Reference
VT2216A SCPI Commands
*ESR? query

Reads and clears the Standard Event Status event register.

Query Syntax: *ESR?

Example Statements: OUTPUT 70918;":*ESR?"
OUTPUT 70918;"*esr?"

Return Format: Integer

Attribute Summary: Preset State: +0
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the current state of the Standard Event Status event register. The state is
returned as a sum of the decimal weights of all set bits. The decimal weight for each bit is
assigned according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7.

The query clears the register after it reads the register.

A bit in this register is set to 1 when the condition it monitors becomes true. A set bit remains set,
regardless of further changes in the condition it monitors, until one of the following occurs:

• The register is read with this query.

• All event registers are cleared with the *CLS command.

For more information on the Standard Event Status enable register set, see the “VT2216A
Register Set Summary” on page 197.
209

SCPI Command Reference
VT2216A SCPI Commands
*IDN? query

Returns a string that uniquely identifies the module.

Query Syntax: *IDN?

Example Statements: OUTPUT 70918;":*IDN?"
OUTPUT 70918;"*idn?"

Return Format: Hewlett-Packard,N2216A (E1562E),<serial_number><software_revision>

Note This response will vary with the revision and date of the firmware used. A VXI Technology
response will yield a response with a "VT" prefix (e.g. "VT2216A") or an Agilent/HP response
will be returned with an "N" prefix (e.g. "N2216"). Both are acceptible.

Attribute Summary: Preset State: instrument dependent
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns:

• The name of the manufacturer.

• The product number, N2216A (E1562E)

• The serial number

• The version of the software
210

SCPI Command Reference
VT2216A SCPI Commands
*OPC command/query

Enable status bit or query completion of all pending overlapped commands.

Command Syntax: *OPC

Example Statements: OUTPUT 70918;":*OPC"
OUTPUT 70918;"*opc"

Query Syntax: *OPC?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: Some commands are processed sequentially. A sequential command holds off the processing of
subsequent commands until it has been completely processed. However, some commands do not
hold off the processing of subsequent commands. These commands are called overlapped
commands. At times, overlapped commands require synchronization. The Attribute Summary
for each command indicates whether it requires synchronization.

The module uses the No Pending Operation (NPO) flag to keep track of overlapped commands
that are still pending (that is, not completed). The NPO flag is reset to 0 when an overlapped
command is pending. It is set to 1 when no overlapped commands are pending. The NPO flag
cannot be read directly, but *OPC and *OPC? can be used to tell when the flag is set to 1.

If *OPC is used, bit 0 of the Standard Event Status event register is set to 1 when the NPO flag is
set to 1. This allows the instrument to generate a service request when all pending overlapped
commands are completed (assuming that bit 0 of the Standard Event Status register and bit 5 of
the Status Byte register have been enabled).

If *OPC? is used, +1 is placed in the output queue when the NPO flag is set to 1. This effectively
allows the controller to be paused until all pending overlapped commands are completed. It must
wait until the response is placed in the queue before it can continue.

Note The *CLS and *RST commands cancel any preceding *OPC command or query. Pending
overlapped commands are still completed, but one can no longer determine when.
211

SCPI Command Reference
VT2216A SCPI Commands
 *RST command

Executes a device reset.

Command Syntax: *RST

Example Statements: OUTPUT 70918;":*RST"
OUTPUT 70918;"*rst"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command returns the instrument to a reset state. In addition, *RST cancels any pending
*OPC command or query.

The reset state is the same as the preset state. The preset state of each command is listed in the
Attribute Summary.

The following are not affected by this command:

• The error queue

• The state of all enable registers

• The state of all transition registers
212

SCPI Command Reference
VT2216A SCPI Commands
*SRE command/query

Sets or queries bits in the Service Request enable register.

Command Syntax: *SRE <Mask>

<Mask>::=number
limits: 0:255

Example Statements: OUTPUT 70918;":*SRE 128"
OUTPUT 70918;"*sre 32"

Query Syntax: *SRE?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows bits in the Service Request enable register to be set. Assign a decimal
weight for each bit to be set (to 1) according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7. Add the weights and then send the sum
with this command.

Note The module ignores the setting specified for bit 6 of the Service Request enable register. This is
because the corresponding bit of the Status Byte register is always enabled.

 The module requests service from the active controller when one of the following occurs:

• A bit in the Status Byte register changes from 0 to 1 while the corresponding bit of the Service
Request enable register is set to 1.

• A bit in the Service Request enable register changes from 0 to 1 while the corresponding bit of
the Status Byte register is set to 1.

The query returns the current state of the Service Request enable register. The state is returned as
a sum of the decimal weights of all set bits.
213

SCPI Command Reference
VT2216A SCPI Commands
*STB? query

Reads the Status Byte register.

Query Syntax: *STB?

Example Statements: OUTPUT 70918;":*STB?"
OUTPUT 70918;"*stb?"

Return Format: Integer

Attribute Summary: Preset State: variable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows bits in the Status Byte register to be set. The state is returned as a sum of
the decimal weights of all set bits. The decimal weight for each bit is assigned according to the
following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7.

The register is not cleared by this query. To clear the Status Byte register, the *CLS command
must be sent.

For more information on the Status Byte register, see the “VT2216A Register Set Summary” on
page 197.
214

SCPI Command Reference
VT2216A SCPI Commands
*TST? query

Performs a selftest on the instrument hardware and returns the results.

Query Syntax: *TST?

Example Statements: OUTPUT 70918;":*TST?"
OUTPUT 70918;"*tst?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command performs tests on both the internal main board and the internal SCSI board by
sending the commands DIAGnostic:BOARd:MAIN? and DIAGnostic:BOARd:SCSI?

The following errors indicate that DIAG:BOAR:MAIN failed:

1: diagErr_versionOrSwitch
2: diagErr_fitsReset
3: diagErr_lbusStatic
4: diagErr_fitsStatic
5: diagErr_vxiStatic
6: diagErr_sharedRam
7: diagErr_fifo
8: diagErr_sramMagicRead
9: diagErr_sramMagicWrite
10: diagErr_a24MagicRead
11: diagErr_a24MagicWrite

The following errors indicate that DIAG:BOAR:SCSI failed:

12: diagErr_staticScsi
13: diagErr_inScsi
14: diagErr_outScsi

See the DIAGnostic commands for additional diagnostic tests.
215

SCPI Command Reference
VT2216A SCPI Commands
*WAI command

Holds off processing of subsequent commands until all preceding commands have been
processed.

Command Syntax: *WAI

Example Statements: OUTPUT 70918;":*WAI"
OUTPUT 70918;"*wai"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: Use *WAI to hold off the processing of subsequent commands until all pending overlapped
commands have been completed.

Some commands are processed sequentially by the instrument. A sequential command holds off
the processing of any subsequent commands until it has been completely processed. However,
some commands do not hold off the processing of subsequent commands; they are referred to as
overlapped commands. *WAI ensures that overlapped commands are completely processed
before subsequent commands (those sent after *WAI) are processed.
216

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:BOARd:MAIN? query

Tests the Main internal PC board.

Query Syntax: DIAGnostic:BOARd:MAIN?

Example Statements: OUTPUT 70918;":DIAGNOSTIC:BOARD:MAIN?"
OUTPUT 70918;"diag:boar:main?"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Failures return a string describing the error.

See “Troubleshooting the VT2216A” starting on page 29 for usage information.
217

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:BOARd:SCSI? query

Tests the internal SCSI PC board.

Query Syntax: DIAGnostic:BOARd:SCSI?

Example Statements: OUTPUT 70918;":DIAGNOSTIC:BOARD:SCSI?"
OUTPUT 70918;"diag:boar:scsi?"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Failures return a string describing the error.

See “Troubleshooting the VT2216A” starting on page 29 for usage information.
218

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:LBUS:CONSume? query

Tests the a local bus data transfer to the module.

Query Syntax: DIAGnostic:LBUS:CONSume? <Logical Address>

<Logical Address> ::= number
limits 0-255

Example Statements: OUTPUT 70918;":DIAGNOSTICLBUS:CONSUME? 32"
OUTPUT 70918;"diag:lbus:cons? 96"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description:. This test requires more than one VT2216A module. This command is sent to the VT2216A on the
right of two adjacent VT2216As and tests the ability to transfer data from the local bus to the
module.

<Logical Address> specifies the VXI logical address of the VT2216A to the left of this module.

Failures return a string describing the error.
219

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:LBUS:GENerate? query

Tests the local bus data transfer from the module.

Query Syntax: DIAGnostic:LBUS:GENerate? <Logical Address>

Example Statements: OUTPUT 70918;":DIAGNOSTIC:BUS:GENERATE? 64"
OUTPUT 70918;"diag:bus:gen? 136"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This test requires more than one VT2216A module to perform. This command is sent to the
VT2216A on the left of two adjacent VT2216As and tests the ability to transfer data from the
module to the local bus.

<Logical Address> specifies the VXI logical address of the VT2216A to the left of this module.

Failures return a string describing the error.
220

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:SCSI:DAT? query

Performs tests on a SCSI DAT.

Query Syntax: DIAGnostic:SCSI:DAT? <Controller>,<Bus Address>

<Controller>::=A|B

<Bus Address>::=number
limits: 0:15

Example Statements: OUTPUT 70918;":DIAGNOSTIC:SCSI:DAT? A,0"
OUTPUT 70918;"diag:scsi:dat? a,7"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Tests the DAT specified at the given SCSI bus address. If the device at this address is not a DAT
an error will be returned.

Note A DAT tape must be inserted in the DAT drive in order to perform this test. All data on the tape
will be destroyed during this test.

Failures return a string describing the error.
221

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:SCSI:DEVices? query

Verifies the interface for a specific SCSI controller.

Query Syntax: DIAGnostic:SCSI:DEVices? <Controller>

<Controller>::=A|B

Example Statements: OUTPUT 70918;":DIAGNOSTIC:SCSI:DEVICES? A"
OUTPUT 70918;"diag:scsi:dev? b"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command verifies correct operation of a single SCSI controller chip and also its interface to
external devices. The command must be sent to each controller to verify that both of the SCSI
controller chips are functioning. If the test is successful the command returns a string which
contains the SCSI address, vendor id, product id and product revision in a "dd:aaaaaaa
aaddddddaa-dddd" format. A null string is returned if the test fails.

Example of the string returned when the SCSI bus contains a Seagate disk at SCSI address 0:

This command does not verify that the devices connected to the SCSI bus are operating correctly.
The command DIAG:BOARd:SCSI? verifies that the VT2216A side of the controller chip is
functioning correctly. The command DIAG:SCSI:DISK? and DIAG:SCSI:DAT? verify that
individual devices are functioning correctly.

See “Troubleshooting the VT2216A” starting on page 29 for usage information.

00:SEAGATE ST373307LW-0001

SCSI Address

Vendor ID Product ID

Product Revision
222

SCPI Command Reference
VT2216A SCPI Commands
DIAGnostic:SCSI:DISK? query

Performs tests on a SCSI disk drive.

Query Syntax: DIAGnostic:SCSI:DISK? <Controller>,<Bus Address>

<Controller>::=A|B

<Bus Address>::=number
limits 0:15

Example Statements: OUTPUT 70918;":DIAGNOSTIC:SCSI:DISK? A,12"
OUTPUT 70918;"diag:scsi:disk? b,2"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Tests the disk drive specified at the given SCSI bus address. If the device at this address is not a
disk, an error will be returned.

Failures return a string describing the error.

See “Troubleshooting the VT2216A” starting on page 29 for usage information.
223

SCPI Command Reference
VT2216A SCPI Commands
LBUS:READ:BUFFer command

Reads data from the module to the left of the VT2216A and writes it to a memory buffer.

Command Syntax: LBUS:READ :BUFFer<Count>,<Blocksize>,<Offset>,<Memory Space>

<Count>::=number
limits: 1:256

<Blocksize>::=number
limits: 16:65536

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example Statements: OUTPUT 70918;":LBUS:READ:BUFFER 16,#H3000D000,A32"
OUTPUT 70918;"lbus:read:buff 64,#h20a080,a24"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command may be used in conjunction with MMEM:SESS:WRIT:BUFF to transfer data
from the local bus to a session. In most cases, users find it easier and faster to use Sequence
throughput operations.

This command reads data from the module to the left of the VT2216A on local bus and writes it
using D16 to a designated memory location using LBUS CONSUME mode and four bytes per
local bus element. The VINStrument:LBUS command must have been previously sent with the
NORMal parameter.

<Count> specifies the number of LBUS blocks to write to the memory buffer from the local bus.

<Blocksize> specifies the number of bytes per local bus block. A block marker will be received
after this many bytes have been read. The maximum number of local bus blocks read is 256.

<Offset> indicates where in the designated memory buffer space the data will be written. The
value is an offset from the beginning of the address space. All address spaces start at offset 0.
A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295, SRAM has an upper
limit of 262143. The value of offset must be divisible by two.

<Memory space> specifies into which memory to write the data blocks. The usable memory
spaces for this command are A24, A32 and SRAM. SRAM indicates the VT2216A shared RAM.

Note Be sure enough memory space is available for the data to be transferred.
224

SCPI Command Reference
VT2216A SCPI Commands
LBUS:WRITe:BUFFer command

Reads data from a memory buffer and writes it to the module to the right of the VT2216A.

Command Syntax: LBUS:WRITe:BUFFer <Count>,<Blocksize>,<Offset>,<Memory Space>

<Count>::=number
limits: 1:256

<Blocksize>::=number
limits: 16:65536

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example Statements: OUTPUT 70918;"LBUS:WRITE:BUFFER 128,16,#H20000000,A32"
OUTPUT 70918;"lbus:writ:buff 16,#h10,#h128,sram"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command may be used in conjunction with MMEM:SESS:READ:BUFF to transfer data
from a session to the local bus. In most cases, users find it easier and faster to use Sequence
playback operations.

This command uses D16 to read blocks of data from a designated offset in a memory buffer then
writes them to the module to the right of the VT2216A on the local bus using LBUS GENERATE
mode and four bytes per local bus element. The VINStrument:LBUS command must have been
previously sent with the NORMal parameter.

<Count> specifies the number of local bus blocks to read from the memory buffer and copy to the
local bus.

<Blocksize> specifies the number of bytes per local bus block. A block marker will be asserted
after this many bytes have been transferred on the local bus. A frame marker will also be asserted
periodically, but there should be no particular meaning associated with the frame marker. The
maximum number of local bus blocks written is 256.

<Offset> indicates from where in the designated memory buffer space the data will be read. The
value is an offset from the beginning of the address space. All address spaces start at offset 0.
A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295, SRAM has an upper
limit of 262143. The value of offset must be divisible by two.
225

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:BSIZe? query

Returns the number of bytes in a logical block for an open SCSI device.

Query Syntax: MMEMory:SCSI[1|2|...|30]:BSIZe?

Example Statements: OUTPUT 70918;":MMEMory:SCSI4:BSIZe?"
OUTPUT 70918;"mmemory:scsi23:bsize?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The returned value is the number of bytes in a logical block for any SCSI device that has been
opened by the MMEM:SCSI:OPEN command. An error will be generated if the device is not
currently open. To find the number of logical blocks on a device send MMEM:SCSI:CAPacity?

Some of the MMEM commands require addresses and counts specified in terms of logical blocks.
The return value of this query specifies the size of a logical block.
226

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO command/query

Note This command is provided for backward compatability with models Agilent/HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support them.
Using this command with the non-HP-manufactured disk drives (including those in the
VT2216A) results in no action. The query returns the current head calibration mode, but the
number does not mean anything for a non-HP drive.

Sets or queries the Auto Head Calibration Mode of an open HP disk drive.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO <Auto Cal Mode>

<Auto Cal Mode>::=ON|OFF

Example Statements: OUTPUT 70918;":MMEM:SCSI14:CAL:AUTO OFF"
OUTPUT 70918;"mmemory:scsi18:calibrate:auto ON"

Query Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO?

Return Format: Integer

Attribute Summary: Preset State: ON
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Auto head calibration mode is supported only for certain Hewlett-Packard SCSI Direct-Access
devices (hard disks). Many disks periodically perform a head recalibration to assure that the
positioning capability is within specification through temperature changes and over time. This
command is useful for disabling head calibration during medium to high speed data transfers.

An example of the head calibration schedule of a C2490 disk drive follows:

Time since spin
up (minutes) Delta (minutes)

0
2 2
4 2
6 2
8 2
10 2
12 2
15 3
18 3
22 4
27 5
33 6
42 9
60 18
100 40
160 60
220 60
etc etc
227

SCPI Command Reference
VT2216A SCPI Commands
Caution If auto calibration is disabled for a period of time longer than the device finds acceptable (in the
instance of the C2490 this is twice the time in the table), writes to the device may be disabled or
the device may force a head calibration to be done without regard to the state of the auto
calibration flag. This may result in an overflow condition due to an interruption of real-time data
flow.

 When any SCSI device is opened, the auto-calibration mode will be enabled.

<Auto Cal Mode> indicates whether the automatic head recalibration mode should be enabled or
disabled.

This command generates an error if the device is not currently open.

This command is not available for SCSI devices that are not Hewlett-Packard disks and will
generate an error.

The query returns the current state of the automatic head calibration mode for the device: 0=OFF,
1=ON.
228

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate] command

Note This command is provided for backward compatability with models Agilent/HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support them.
Using this command with the non-HP-manufactured disk drives (including those in the
VT2216A) results in no action.

Performs head calibration on an HP disk drive.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate]

Example Statements: OUTPUT 70918;":MMEMORY:SCSI8:CALIBRATE:IMMEDIATE"
OUTPUT 70918;"mmem:scsi:cal"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command is intended only for certain Hewlett-Packard SCSI Direct-Access devices (hard
disks). Many disks periodically perform a head recalibration to assure that the positioning
capability is in specification through temperature changes and over time. This command will
force certain Hewlett-Packard supported disks to perform a head calibration immediately. This
command is useful before starting a high speed data transfer. It is not useful when the data
transfer rate will be significantly less than the disk’s sustained media transfer rate.

This command generates an error if the device is not currently open.
229

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? query

Note This command is provided for backward compatability with models Agilent/HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support them.
Using this command with the non-HP-manufactured disk drives (including those in the
VT2216A) returns a value of 9,999,999.

Returns the time until the next head calibration.

Query Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:TIME?

Example Statements: OUTPUT 70918;":MMEMORY:SCSI7:CALibrate:TIME?"
OUTPUT 70918;"mmem:scsi7:cal:time?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command will work on HP disk drives only. It is a good idea to check the time remaining
until the next calibration before starting a long throughput. If the time is short, send the
MMEM:SCSI:CAL command to each of the devices in the Session and send this query again. If
the time is still short, wait for the disks to be spun up for a longer length of time. See the
MMEM:SCSI:CAL:AUTO command for a schedule of calibration times.

This query generates an error if the device is not currently open.
230

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:CAPacity? query

Returns the number of logical blocks on an open SCSI device.

Query Syntax: MMEMory:SCSI[1|2|...|30]:CAPacity?

Example Statements: OUTPUT 70918;":MMEMORY:SCSI7:CAPACITY?"
OUTPUT 70918;"mmem:scsi7:cap?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The returned value is the number of available logical blocks for any SCSI device that has been
opened by the MMEM:SCSI:OPEN command. All Direct-Access SCSI devices (disks) support
this capability and will return a meaningful result. Other types of devices may not be able to
provide any meaningful information and will return 4294967295.

The size, in bytes, of each logical block can be determined by sending the MMEM:SCSI:BSIZe?
query. By using the combination of both commands and multiplying their results, the total byte
capacity of the device can be determined.

This command generates an error if the device is not currently open.
231

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:CLOSe command

Closes an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CLOSe

Example Statements: OUTPUT 70918;":MMEM:SCSI2:CLOS"
OUTPUT 70918;"mmemory:scsi20:close"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Use of this command will make the specified logical device descriptor unavailable for use with
other commands. If a SCSI device has been opened more than once using different logical device
descriptors, it will need to be closed more than once. An error will be returned if the device is not
currently open.

If the MMEM:SCSI:CLOS command is sent while the logical descriptor is in use in a TUNIT or
SESSION; indeterminate and undesirable results will occur.
232

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe] command/query

Sets or queries the Erase Bypass Mode of an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:EBYPass[:STATe] <Erase Mode>

<Erase Mode>::=ON|OFF

Example Statements: OUTPUT 70918;":MMEMORY:SCSI16:EBYPASS ON"
OUTPUT 70918;"mmem:scsi22:ebyp:stat OFF"

Query Syntax: MMEMory:SCSI[1|2|...|30]:EBYPass[:STATe]?

Return Format: Integer

Attribute Summary: Preset State: OFF
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Erase bypass mode is supported only by certain magneto-optical disks that require an erase before
write. This mode must only be enabled when the media has never been written to or if an erase
has already been performed in the area to be written.

Caution When erase bypass mode is active, a write command to a non-erased block on a device will fail
and the data will be lost. In addition, the error correction bits on the device will be corrupted
making the block unreadable.

This command generates an error if the device is not currently open or if the device does not
support erasing.

<Erase Mode> indicates whether the erase bypass mode should be enabled or disabled. The value
upon opening a device is OFF or disabled.

The query returns the current state of the erase bypass mode for the device: 0=OFF, 1=ON.
233

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:ERASe command

Erase blocks on an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:ERASe <Address>,<Length>

<Address>::=number
limits: 0:4294967295

<Length>::=number
limits: 0:4294967295

Example Statements: OUTPUT 70918;":MMEM:SCSI15:ERAS #H1CC00,#H200"
OUTPUT 70918;"mmemory:scsi3:erase 117760,512"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command should be sent only for certain magneto-optical devices. It is used to speed up
writes to these types of devices that require an erase before write. This command should be used
in conjunction with the command MMEM:SCSI:EBYP.

Caution Any block that has been erased cannot be read. The erasure removes data as well as the error
correction bits on the media. A read of media without correction bits will fail.

<Address> is the logical block number at which to start erasing.

<Length> is the number of logical blocks to erase.

This command generates an error if the device is not currently open or if the device does not
support erasing.

This command does not have a query form.
234

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:OPEN command/query

Opens a SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:OPEN <Controller>,<Bus address>,<Device unit>,
<Mode>

<Controller>::=A|B

<Bus address>::=number
limits: 0:15

<Device unit>::=number
limits: 0:7

<Mode>::=number
limits: 0:4294967295

Example Statements: OUTPUT 70918;":MMEM:SCSI5:OPEN A,5,0,#H40"
OUTPUT 70918;"mmemory:scsi2:open b,0,0,#he8"

Query Syntax: MMEMory:SCSI[1|2|...|30]:OPEN?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command opens the logical device descriptor specified by the subopcode [1|2|...|30] on the
SCSI node.

The following conditions generate an error:

• This logical descriptor is already open.

• No device responds at the address specified by <Controller>, <Bus address>, <Device unit>.

• The device at the designated address is not a block-oriented, mass storage device.

With no other errors, the device is opened and ready for use in other commands.

The query version of this command requires no parameters. It returns 0 if the logical device
descriptor is not currently open and 1 if the logical descriptor is already open.

<Controller> is A or B indicating to which SCSI controller the device is connected. The A or B
corresponds to the A or B on the front-panel of the module.

<Bus address> is 0-15 indicating the SCSI logical address.

<Device unit> is 0-7 indicating the logical unit number. The logical unit number for all VT2216A
devices is 0. Some external devices may have other logical unit numbers.
235

SCPI Command Reference
VT2216A SCPI Commands
<Mode> is an unsigned integer representing a bitfield that indicates various options for the
device. Bits in the <Mode> field are:

In order to specify more than one of the above modes, add the desired bit values together to obtain
the mode value to send to the VT2216A.

SCSI devices may be opened more than once via different logical device descriptors (represented
by the subopcode in the command), but the mode field specified the first time a device is opened
is used for all successive times it is opened even if the specified value is different. Any device
that is opened multiple times, must also be closed multiple times.

Mode Bitfield Description
Bits

Decimal Hexa-
decimal

TM_verifyAfterWrite Performs a medium verification after every write. Not
supported for sequential devices.

1 0x001

TM_reserve Do not allow other SCSI initiators to access the device while
it is open.

2 0x002

TM_preventRemoval For devices with removable media, do not allow the media to
be removed while the device is open.

4 0x004

TM_ejectOnClose For devices with removable media, eject the media when the
device is closed. For fixed-media devices, spin down the
drive when it is closed.

8 0x008

TM_writeWithoutErase For optical memory devices, disable the erase-before-write
to increase speed of writes. See SCPI commands
MMEM:SCSI:ERAS and MMEM:SCSI:EBYP for warnings
about this mode.

16 0x010

TM_asynchronousTransfer Use asynchronous instead of synchronous transfers to the
device. This cuts the max transfer rate in half.

32 0x020

TM_preventDisconnect Do not allow the device to disconnect while doing certain
operations. This is slightly faster than allowing disconnect.

64 0x040

TM_dontStartUnit Do not spin up a disk. Reads and writes will cause errors
under these conditions but the disks may be configured to
spin up on powerup. This bit is good for a quick check for
which devices are present without waiting for a spin up.

256 0x100

TM_readOnly Return an error if any write to the device is attempted. 512 0x200
236

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SCSI[1|2|...|30]:TEMPerature? query

Note This command is provided for backward compatability with models Agilent/HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support them.
Using this command with the non-HP-manufactured disk drives (including those in the
VT2216A) returns a value 1.0°C (first integer = 1, second integer = 0).

Returns the temperature of an HP disk drive

Query Syntax: MMEMory:SCSI[1|2|...|30]:TEMPerature?

Example Statements: OUTPUT 70918;":MMEMORY:SCSI4:TEMPERATURE?"
OUTPUT 70918;"mmemory:scsi23:temp?"

Return Format: Integer
Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command is supported for certain Hewlett-Packard disk drives only. Two integer values are
returned. The first integer represents the temperature in degrees Centigrade. The second integer
represents the fractional part of an additional degree and is designated as the number of 256ths of
a degree.

Absolute accuracy of temperate is ±5°C.
237

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:ADD command

Adds a Transfer Unit to a Session.

Command Syntax: MMEMory:SESSion[1|2|...|12]:ADD <Transfer Unit>,<Count>

<Transfer Unit>::=number
limits: 1:15

<Count>::=number
limits: 1:33554430

Example Statements: OUTPUT 70918;":MMEMORY:SESSION12:ADD 5,26974"
OUTPUT 70918;"mmemory:session:add 12,#h7fff"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: All data transfers, including Sequences, are performed using Sessions. A Session may contain no
more than fifteeh Transfer Units. This command adds a Transfer Unit to the specified Session.
The Session can be cleared using the MMEM:SESS:DEL:ALL command.

Every Transfer Unit that is added to a Session must contain the same number of SCSI devices. If
each Transfer Unit in a Session is made up of a single device, each device must be on the same
SCSI controller. This command generates an error if these constraints are not met.

<Transfer Unit> determines which logical Transfer Unit is to be added to the SESSION. Transfer
units are always added to the end of the current list of Transfer Units. The command generates an
error if the Transfer Unit is not currently open. A Transfer Unit may be included in more than one
Session. It is also permissible to include the same Transfer Unit more than once in a single
Session, although there is no good reason to do so.

<Count> is the number of logical blocks to transfer to or from this Transfer Unit before switching
to the next Transfer Unit in the Session. The size of a logical block can be determined by sending
the MMEM:SCSI:BSIZ? query. When there are multiple Transfer Units in the Session, <Count>
should be chosen such that the total number of bytes written at one time is less than or equal to the
number of bytes of cache contained on the device(s). If the Transfer Unit contains two devices,
<Count> specifies the number of logical blocks to be written to or read from the pair of devices,
half of which will be written to or read from an individual device. The largest value of <Count>
for disk drives is 65535 per disk drive or 131070 for a pair of disk drives.
238

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:COPY command

Copies data from one Session to another.

Command Syntax: MMEMory:SESSion[1|2|...|12]:COPY <Destination Session>,<Count>

<Destination Session>::=number
limits: 1:12

<Count>::=number
limits: 1:4294967295

Example Statements: OUTPUT 70918;":MMEMORY:SESSION2:COPY 10,#H40000"
OUTPUT 70918;"mmemory:session:copy 1,262144"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command copies the contents of a Session (which may be split width-wise across two
devices and/or length-wise across N Transfer Units) to another Session. The Session may consist
of a single Transfer Unit or even a single SCSI device. It is even possible to copy data from one
part of a device to another part of the same device as long as the copied data does not overlap the
original data. Both Sessions must have been properly initialized using open Transfer Units and
open SCSI devices. This command provides a convenient means to backup a previously acquired
throughput Session, or to recombine a throughput Session that was split lengthwise and/or
widthwise into a linear file.

Data is read from one Session into the VT2216A FIFO; then data is written to the destination
Session.

<Destination Session> is the destination Session of the copy. An error will be generated if the
Session does not contain any Transfer Units.

<Count> is the number of logical disk blocks to copy. It refers to the number of logical blocks on
the source Session since it is possible to have different sized logical blocks between the source
Session and the destination Session. The size of a logical block for a given device can be obtained
by sending the MMEM:SCSI:BSIZ query.

The expected backup performance is greater than the total time required for source plus
destination device access.
239

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:DELete:ALL command

Deletes all Transfer Units from the specified Session.

Command Syntax: MMEMory:SESSion[1|2|...|12]:DELete:ALL

Example Statements: OUTPUT 70918;":MMEMORY:SESSION:DELETE:ALL"
OUTPUT 70918;"mmem:sess3:del:all"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: All Transfer Units are removed from the Session definition. The Transfer Units are NOT closed.
To close the Transfer Units send the command MMEM:TUN:CLOS.
240

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:READ:BUFFer command

Reads data from a Session into a memory buffer.

Command Syntax: MMEMory:SESSion[1|2|...|12]:READ:BUFFer <Count>,<Offset>,<Memory Space>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example Statements: OUTPUT 70918;":MMEM:SESS6:READ:BUFF 256,131072,SRAM"
OUTPUT 70918;"mmem:sess1:read:buff #H200,3354430,A32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The memory buffer may be in the A24, A32, or VT2216A shared RAM memory spaces. The A16
memory space is not usable, due to the limited addressable area available in that memory space.
MMEM:SESS:SEEK may be used to position the Session to where the read will take place. All
data transfers to the buffer are done using D16.

<Count> specifies the number of logical blocks to read from the Session and copy to the specified
memory space. If the Session contains Transfer Units that consist of two SCSI devices, count
must be an even number or the data transfer will be indeterminate.

<Offset> specifies where in the memory space, the data will be written. The value is an offset in
bytes from the beginning of the address space. It is up to the user to make sure that there is
enough space available starting at this offset in which to write the data. All address spaces start at
offset 0. A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295, SRAM has
an upper limit of 262143. The value of offset must be divisible by two.

<Memory Space> specifies the memory space into which to copy the data. The memory spaces
that make sense for this command are A24, A32 and SRAM. SRAM indicates the VT2216A
shared RAM.
241

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:READ:FIFO command

Reads data from a SCSI Session into a FIFO.

Command Syntax: MMEMory:SESSion[1|2|...|12]:READ:FIFO <Count>,<Offset>,<Memory Space>,
<FIFO width>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A16|A24|A32|SRAM

<FIFO width>::=number
limits: 16|32

Example Statements: OUTPUT 70918;":MMEMORY:SESSION8:READ:FIFO 32768,#HDA2A,A16,16"
OUTPUT 70918;"mmemory:session:read:fifo 128,#h280040,A24,32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The FIFO may be in the A16, A24, A32, or VT2216A shared RAM memory spaces.
MMEM:SESS:SEEK may be used to position the Session to where the read will take place. This
command differs from MMEM:SESS:READ:BUFF in that the offset is not incremented − every
write to the FIFO is at the same offset in the memory space.

<Count> specifies the number of SCSI logical blocks to read from the Session and copy to the
specified memory space. If the Session contains Transfer Units that consist of two SCSI devices,
count must be an even number or the data transfer will be indeterminate.

<Offset> specifies where in the memory space, the data will be written. The value is an offset in
bytes from the beginning of the address space. All address spaces start at offset 0. A16 has an
upper limit of 65535, A24 has an upper limit of 16777215, A32 has an upper limit of
4294967295, SRAM has an upper limit of 262143. The value of offset must be divisible by two.

<Memory Space> specifies into which memory space to copy the data. The memory spaces are
A16, A24, A32 and SRAM. SRAM indicates the VT2216A shared RAM.

<FIFO width> indicates the number of bits in each element of the FIFO. The only acceptable
values are 16 and 32. All writes to the FIFO are done using D16, thus a 32 bit FIFO consists of
two writes.
242

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:SEEK command

Sets up all devices in a Session to allow the next data transfer to begin at the specified block
number.

Command Syntax: MMEMory:SESSion[1|2|...|12]:SEEK <Block>

<Block>::=number
limits: 0:4294967295

Example Statements: OUTPUT 70918;":MMEM:SESS11:SEEK 8191"
OUTPUT 70918;"mmemory:session4:seek #h1FFF"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command sets the current position of the Session to be offset to the specified logical block
from the beginning of the Session. If Transfer Units in the Session contain two SCSI devices, the
specified logical block must be even. All Transfer Units in the Session will be positioned such
that a MMEM:SESS:READ:*, MMEM:SESS:WRIT:*, or SEQ:BEG will start at the specified
logical block.

The block number specified here does not correspond to a specific logical block number on a
particular device. Rather the block number corresponds to an offset from the logical block
number specified as the beginning logical block when each Transfer Unit was opened with
MMEM:TUN:OPEN. In other words, when a Transfer Unit is opened, it can specify to begin at
some non-zero logical block number. Therefore, specifying a seek to block zero means that the
next data transfer will begin at the first block of the Session. This corresponds to the non-zero
block number specified when each Transfer Unit was opened. This is also true if a Transfer Unit
consists of a single device, such that a single-device Session may also start at a non-zero block.
Furthermore, for Transfer Units that consist of a pair of SCSI devices, the data is two logical
blocks in size and is spread across the pair of devices alternating two bytes to each device.
243

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:SIZE? query

Returns the number of Transfer Units in the Session.

Query Syntax: MMEMory:SESSion[1|2|...|12]:SIZE?

Example Statements: OUTPUT 70918;":MMEMORY:SESSION1:SIZE?"
OUTPUT 70918;"mmemory:session7:size?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific
244

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer command

Writes data to a SCSI Session from a memory buffer.

Command Syntax: MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer <Count>,<Offset>,<Memory Space>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example Statements: OUTPUT 70918;":MMEMORY:SESSION11:WRITE:BUFFER 16384,#H300AD0,A24"
OUTPUT 70918;"mmemory:session2:write:buffer 64,4608,SRAM"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The memory buffer may be in the A24, A32, or VT2216A shared RAM memory spaces. The A16
memory space should not be specified, due to the limited addressable area available in that
memory space. MMEM:SESS:SEEK may be used to position the Session to where the SCSI
write will be done. All reads from the buffer are done using D16.

<Count> specifies the number of logical blocks to write to the Session from the specified memory
space. If the Session contains Transfer Units that consist of two SCSI devices, count must be an
even number or the data transfer will be indeterminate.

<Offset> specifies from where in the memory space the data will be read. The value is an offset
in bytes from the beginning of the address space. One must make sure that there is enough space
available starting at this offset from which to read data. All address spaces start at offset 0. A24
has an upper limit of 16777215, A32 has an upper limit of 4294967295, SRAM has an upper limit
of 262143. The value of offset must be divisible by 2.

<Memory Space> specifies from which memory space to copy the data. The memory spaces that
make sense for this command are A24, A32 and SRAM. SRAM indicates the VT2216A shared
RAM.
245

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:SESSion[1|2|...|12]:WRITe:FIFO command

Writes data to a SCSI Session from a FIFO.

Command Syntax: MMEMory:SESSion[1|2|...|12]:WRITe:FIFO <Count>,<Offset>,<Memory Space>,
<FIFO width>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A16|A24|A32|SRAM

<FIFO width>::=number
limits: 16|32

Example Statements: OUTPUT 70918;":MMEMORY:SESSION:WRITE:FIFO 3840,#H20000A800,A32,16"
OUTPUT 70918;"mmemory:session2:write:fifo #F00,#hCC38,A16,32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The FIFO may be in the A16, A24, A32, or VT2216A shared RAM memory spaces.
MMEM:SESS:SEEK may be used to position the Session to where the write will be done. This
command differs from MMEM:SESS:WRIT:BUFF in that the offset is not incremented − every
FIFO read is at the same offset in the memory space.

<Count> specifies the number of SCSI logical blocks to write to the Session from the specified
memory space. If the Session contains Transfer Units that consist of two SCSI devices, count
must be an even number or the data transfer will be indeterminate.

<Offset> specifies from where in the memory space the data will be read. The value is an offset
in bytes from the beginning of the address space. All address spaces start at offset 0. A16 has an
upper limit of 65535, A24 has an upper limit of 16777215, A32 has an upper limit of
4294967295, SRAM has an upper limit of 262143. The value of offset must be divisible by two.

<Memory Space> specifies from which memory space to copy the data. The memory spaces that
make sense for this command are A16, A24, A32 and SRAM. SRAM indicates the VT2216A
shared RAM.

<FIFO width> indicates the number of bits in each element of the FIFO. The only acceptable
values are 16 and 32. All reads from the FIFO are done using D16, thus a 32 bit FIFO consists of
two reads.
246

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:TUNit[1|2|...|15]:CLOSe command

Closes an open Transfer Unit.

Command Syntax: MMEMory:TUNit[1|2|...|15]:CLOSe

Example Statements: OUTPUT 70918;":MMEMORY:TUNIT12:CLOSE"
OUTPUT 70918;"mmemory:tunit:close"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: An error will be generated if the Transfer Unit is not currently open.

This command only disassociates individual SCSI devices from this Transfer Unit. The
underlying SCSI devices will not be closed with this command. The SCSI devices must be closed
later with the MMEM:SCSI:CLOS command.
247

SCPI Command Reference
VT2216A SCPI Commands
MMEMory:TUNit[1|2|...|15]:OPEN command/query

Opens a Transfer Unit given the underlying SCSI devices and starting logical block numbers.

Command Syntax: MMEMory:TUNit[1|2|...|15]:OPEN <Device1>,<Block1>[,<Device2>,<Block2>]

<Device1>::=number
limits: 1:30

<Block1>::=number
limits: 0:4294967295

<Device2>::=number
limits: 0:30

<Block2>::=number
limits: 0:4294967295

Example Statements: OUTPUT 70918;":MMEMORY:TUNIT2:OPEN 20,0,0,0"
OUTPUT 70918;"mmem:tun13:open 3,2048,1,2048"

Query Syntax: MMEMory:TUNit[1|2|...|15]:OPEN?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: <Device1> is the logical device number used in a previous call to MMEM:SCSIx:OPEN, where x
is the value to use here. An error will be generated if the logical device MMEM:SCSIx is not
currently open.

<Block1> is the SCSI logical block number specifying the beginning position on the device
specified by <Device1>. It will be impossible for MMEM:TUN:* commands or MMEM:SESS:*
commands using this MMEM:TUN to reference SCSI logical blocks smaller than the number
specified here.

<Device2> is the logical device number used in a previous call to MMEM:SCSIx:OPEN. If the
Transfer Unit is to be opened using only a single device this field must be set to 0. An error will
be generated if the logical device MMEM:SCSIx is not currently open or if <Device1> and
<Device2> are on the same SCSI bus. For a split pair <Device1> must be on the SCSI A bus and
<Device2> must be on the SCSI B bus.

<Block2> is the SCSI logical block number specifying the beginning position on the device
specified by <Device2>. For a single-device Transfer Unit, this field should be set to 0.

The query version of this command requires no parameters. It returns 0 if the logical Transfer
Unit is not currently open and 1 if the logical Transfer Unit is open.

It is possible to use a single, open SCSI device in more than one Transfer Unit, but it is important
that all Transfer Units in a Session include an individual SCSI device only once. By including
two SCSI units in a Transfer Unit, 32-bit data may be transferred by splitting the data across two
devices in such a way as to make the upper 16 bits go to one device and the lower 16 bits of the
quantity go to another device. This type of data splitting requires that the two devices be on
different SCSI controllers. If two SCSI devices are used in the Transfer Unit, they must both have
the same blocksize. The blocksize can be determined by sending the MMEM:SCSI:BSIZ?
command.
248

SCPI Command Reference
VT2216A SCPI Commands
SEQuence[1|2|3|4]:ADD command

Append an operation to the specified Sequence.

Command Syntax: SEQuence[1|2|3|4]:ADD <Operation>, <Count>, <Address>, <Misc>

<Operation>::=number
limits: 0:65535

<Count>::=number
limits: 0:4294967295

<Address>::=number
limits: 0:4294967295

<Misc>::=number
limits: 0:4294967295

Example Statements: OUTPUT 70918;"SEQUENCE:ADD #h1000,#h10,0,#h03000800"
OUTPUT 70918;"seq3:add #h3012,65536,2048,0"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Add the specified operation to the end of the specified Sequence. The maximum number of
operations in a single Sequence is 100. The number of operations currently in the Sequence may
be determined by sending the SEQ:SIZE? command.

The list of Sequence operations should be cleared by sending the SEQ:DEL:ALL command
before adding new Sequence operations using this command.

Note For a list and detailed description of all Sequence operations that may be added using this
command and an explanation of the above parameters see “Sequence Operations Reference”
starting on page 141.
249

SCPI Command Reference
VT2216A SCPI Commands
SEQuence[1|2|3|4]:BEGin command

Begin a Sequence for throughput or playback data transfer.

Command Syntax: SEQuence[1|2|3|4]:BEGin <Type>, <Byte Count>, <Session>

<Type>::=THRoughput|VPLayback|LPLayback|MTHRoughput|MPLayback

<Byte Count>::=number
limits: 1:9223372036854775807

<Session>::=number
limits: 1:12

Example Statements: OUTPUT 70918;":SEQ:BEG VPL,262144,1"
OUTPUT 70918;"sequence3:begin throughput,#h200000000,2"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: Begin execution of the specified Sequence. A Session must already be set up before sending this
command. See the commands MMEM:SESS:*.

<Type> indicates whether the Sequence will be a throughput or a playback. The internal software
needs to be told this in order to get data flowing in the right direction. It also needs to be told
whether a playback will be to the VXI bus, or to the LBUS and whether block and frame markers
will be saved with the data on a throughput or restored on a playback.

<Byte Count> is a 64-bit integer that indicates the total number of bytes that will be transferred by
the Sequence. Once this byte count is reached, the Sequence will terminate. This byte count is
used to determine how many SCSI logical blocks will be transferred to/from the devices. The
software will round up to the next even number of logical blocks

<Session> indicates which Session will be used for this Sequence. The commands to initialize
the Session must already have been successfully sent to the module. See MMEM:SESS:*.

Transfer type name Transfer action performed
THRoughput Throughput without block and frame markers. Data may subsequently be played

back with either VPLayback or LPLayback.
VPLayback VXI playback only. For use with data previously transferred with THRoughput.
LPLayback Local bus playback only without block and frame markers. For data previously

transferred with THRoughput.
MTHRoughput Throughput in which all local bus data will have the block and frame markers

embedded in the data stream. Data acquired via MTHROUGHPUT may only be
played back using MPLAYBACK.

MPLayback Local bus playback that will reconstruct the block and frame markers from information
in the data stream. For use with data previously transferred with MTHRoughput.
250

SCPI Command Reference
VT2216A SCPI Commands
SEQuence[1|2|3|4]:DELete:ALL command

Remove all elements from the specified Sequence list.

Command Syntax: SEQuence[1|2|3|4]:DELete:ALL

Example Statements: OUTPUT 70918;":SEQUENCE4:DELETE:ALL"
OUTPUT 70918;"seq2:del:all"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Delete all elements of the Sequence. This is the only command that removes elements from a
Sequence. This command should be sent before adding elements to a Sequence.
251

SCPI Command Reference
VT2216A SCPI Commands
SEQuence[1|2|3|4]:SIZE? query

Return the number of elements in the Sequence.

Query Syntax: SEQuence[1|2|3|4]:SIZE?

Example Statements: OUTPUT 70918;":SEQ2:SIZE?"
OUTPUT 70918;"sequence:size?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The number returned should equal the number of times SEQ:ADD has been sent since the last
SEQ:DEL:ALL, *RST or powerup. The maximum number of elements in a Sequence is 100.
252

SCPI Command Reference
VT2216A SCPI Commands
SEQuence[1|2|3|4]:TRANsferred? query

Return the number of bytes transferred in the Sequence.

Query Syntax: SEQuence[1|2|3|4]:TRANsferred?

Example Statements: OUTPUT 70918;":SEQUENCE2:TRANSFERRED?"
OUTPUT 70918;"seq4:tran?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: If the Sequence completed without errors and was not aborted, the returned value will be almost
equal to the number of bytes specified with the SEQ:BEG command. Otherwise, the returned
value will indicate the number of bytes that were successfully transferred.
253

SCPI Command Reference
VT2216A SCPI Commands
STATus:OPERation:CONDition? query

Reads the Operation Status condition register.

Query Syntax: STATus:OPERation:CONDition?

Example Statements: OUTPUT 70918;":STATUS:OPERATION:CONDITION?"
OUTPUT 70918;"status:operation:condition?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the Operation
Status condition register. (The decimal weight of a bit is 2n, where n is the bit number.)

See Operation Status Register Set on page 196 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

Sequence in progress
Waiting for TRIG
254

SCPI Command Reference
VT2216A SCPI Commands
STATus:OPERation:ENABle command/query

Sets and queries bits in the Operation Status enable register.

Command Syntax: STATus:OPERation:ENABle <Bit Mask>

<Bit Mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STATUS:OPER:ENAB 304"
OUTPUT 70918;"status:operation:enable 32"

Query Syntax: STATus:OPERation:ENABle?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status enable register to 1, send the bit’s decimal weight with
this command. To set more than one bit to 1, send the sum of the decimal weights of all the bits.
(The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Operation Status Register Set on page 196 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

Sequence in progress
Waiting for TRIG
255

SCPI Command Reference
VT2216A SCPI Commands
STATus:OPERation[:EVENt]? query

Reads and clears the Operation Status event register.

Query Syntax: STATus:OPERation[:EVENt]?

Example Statements: OUTPUT 70918;":STATUS:OPERATION?"
OUTPUT 70918;"stat:oper:even?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the Operation
Status event register. (The decimal weight of a bit is 2n, where n is the bit number.)

Note The Operation Status event register is automatically cleared after it is read by this query.

See Operation Status Register Set on page 196 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

Sequence in progress
Waiting for TRIG
256

SCPI Command Reference
VT2216A SCPI Commands
STATus:OPERation:NTRansition command/query

Sets and queries bits in the Operation Status negative transition register.

Command Syntax: STATus:OPERation:NTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STAT:OPER:NTR 256"
OUTPUT 70918;"status:operation:ntransition 48"

Query Syntax: STATus:OPERation:NTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status negative transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of
all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Operation Status Register Set on page 196 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

Sequence in progress
Waiting for TRIG
257

SCPI Command Reference
VT2216A SCPI Commands
STATus:OPERation:PTRansition command/query

Sets and queries bits in the Operation Status positive transition register.

Command Syntax: STATus:OPERation:PTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STAT:OPER:PTR 304"
OUTPUT 70918;"status:operation:ptransition 32"

Query Syntax: STATus:OPERation:PTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status positive transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of
all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 1 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Operation Status Register Set on page 196 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Session in progress

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 7
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R
Sequence in progress

Waiting for TRIG
258

SCPI Command Reference
VT2216A SCPI Commands
STATus:PRESet command

Sets bits in most enable and transition registers to their default state.

Command Syntax: STATus:PRESet

Example Statements: OUTPUT 70918;":STATUS:PRESET"
OUTPUT 70918;"stat:pres"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: STATUS:PRESet has the effect of bringing all events to the second level register sets
(Questionable Status and Operation Status) without creating an SRQ or reflecting events in a
serial poll.

It also affects these register sets (Questionable Status and Operation Status) as follows:

• Sets all enable register bits to 0.

• Sets all positive transition register bits to 1.

• Sets all negative transition register bits to 0.
259

SCPI Command Reference
VT2216A SCPI Commands
STATus:QUEStionable:CONDition? query

Reads the Questionable Status condition register.

Query Syntax: STATus:QUEStionable:CONDition?

Example Statements: OUTPUT 70918;":STAT:QUES:COND?"
OUTPUT 70918;"status:questionable:condition?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Status condition register. (The decimal weight of a bit is 2n, where n is the bit number.)

See Questionable Status Register Set on page 194 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

260

SCPI Command Reference
VT2216A SCPI Commands
STATus:QUEStionable:ENABle command/query

Sets and queries bits in the Questionable Status enable register.

Command Syntax: STATus:QUEStionable:ENABle <Bit Mask>

<Bit Mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STAT:QUES:ENAB 256"
OUTPUT 70918;"status:questionable:enable 512"

Query Syntax: STATus:QUEStionable:ENABle?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status enable register to 1, send the bit’s decimal weight
with this command. To set more than one bit to 1, send the sum of the decimal weights of all the
bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Questionable Status Register Set on page 194 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

261

SCPI Command Reference
VT2216A SCPI Commands
STATus:QUEStionable[:EVENt]? query

Reads and clears the Questionable Status event register.

Query Syntax: STATus:QUEStionable[:EVENt]?

Example Statements: OUTPUT 70918;":STATUS:QUESTIONABLE:EVENT?"
OUTPUT 70918;"status:questionable?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the Questionable
Status event register. (The decimal weight of a bit is 2n, where n is the bit number.)

Note The Questionable Status event register is automatically cleared after it is read by this query.

See Questionable Status Register Set on page 194 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

262

SCPI Command Reference
VT2216A SCPI Commands
STATus:QUEStionable:NTRansition command/query

Sets and queries bits in the Questionable Status negative transition register.

Command Syntax: STATus:QUEStionable:NTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STAT:QUES:NTR 768"
OUTPUT 70918;"Status:Questionable:Ntransition 256"

Query Syntax: STATus:QUEStionable:NTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status negative transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the decimal
weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Questionable Status Register Set on page 194 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

263

SCPI Command Reference
VT2216A SCPI Commands
STATus:QUEStionable:PTRansition command/query

Sets and queries bits in the Questionable Status positive transition register.

Command Syntax: STATus:QUEStionable:PTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example Statements: OUTPUT 70918;":STATUS:QUESTIONABLE:PTRANSITION 256"
OUTPUT 70918;"stat:ques:ptr 512"

Query Syntax: STATus:QUEStionable:PTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status positive transition register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal weights of
all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 1 on powerup or when the STAT:PRES command is sent. However, the
current setting of bits is not modified when the *RST command is sent.

See Questionable Status Register Set on page 194 for a definition of bits in the register set.

8

0
1
2
3
4
5
6
7

9
10
11
12
13
14
X

8

Bit Weights

1
2
3
4
5
6
7

9
10
11
12
13
14
X

256

1
2
4
8
16
32
64
128

512
1024
2048
4096
8192
16384

0

Sequence Error
Session I/O Error

Condition

Positive
Transition

Negative
Transition

Event Enable

Bit 3
Status Byte

STATus:QEUStionable:CONDition?
STATus:QEUStionable:PTRansition

STATus:QEUStionable:NTRansition
STATus:QEUStionable:EVENt?

STATus:QEUStionable:ENABle

Lo
gi

ca
l O

R

264

SCPI Command Reference
VT2216A SCPI Commands
SYSTem:ABORt command

Aborts a data transfer Session and/or Sequence.

Command Syntax: SYSTem:ABORt

Example Statements: OUTPUT 70918;":SYSTEM:ABORT"
OUTPUT 70918;"syst:abor"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Any data transfer Session in progress is aborted. The Session data structures will not be altered
and all Transfer Units and SCSI devices will remain open. The local bus is placed into the reset
state. Any Sequence in progress is aborted. Sequence data structures are updated such that a
SEQ:TRAN? query will correctly indicate the number of bytes actually transferred during the
Sequence.
265

SCPI Command Reference
VT2216A SCPI Commands
SYSTem:COMMunicate:SCSI[:SELF]:ADDRess command/query

Changes the SCSI address on a VT2216A individual SCSI bus controller.

Command Syntax: SYSTem:COMMunicate:SCSI[:SELF]:ADDRess <Controller>,<Bus address>

<Controller>::=A|B

<SCSI address>::=number
limits 0:15

Example Statements: OUTPUT 70918;":SYSTEM:COMMUNICATE:SCSI:SELF:ADDRESS A,5"
OUTPUT 70918;"syst:comm:scsi:addr b,13"

Query Syntax: SYSTem:COMMunicate:SCSI:SELF:ADDRess? <Controller>

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The VT2216A SCSI bus address is an internal address that is set on powerup by switches CA0
and CA1. When multiple VT2216As are on the same SCSI bus, it must be ensured that no two
SCSI controllers share the same SCSI bus address before any SCSI accesses can be performed.
This command allows one to query and change the SCSI address values of the VT2216A,
overriding the switch settings. (See “Installing the VT2216A” starting on page 19 for information
on setting the switches manually.) It is also necessary to change the VT2216A SCSI address if an
external host or other SCSI device is at the same address as any SCSI bus controller.

The query returns the current address.

Note This address should not be confused with the SCSI logical address of a device that is designated
by MMEM:SCSI:OPEN. The address set by SYST:COMM:SCSI:ADDR is only used internally
by the VT2216A and will not be used by any SCPI commands.
266

SCPI Command Reference
VT2216A SCPI Commands
SYSTem:ERRor? query

Returns one error message from the module’s error queue.

Query Syntax: SYSTem:ERRor?

Example Statements: OUTPUT 70918;":SYSTEM:ERROR?"
OUTPUT 70918;"syst:err?"

Return Format: Integer
STRING

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: The error queue temporarily stores up to ten error messages. When the SYST:ERR query is sent,
one message is moved from the error queue to the output queue so the controller can read the
message. The error queue delivers messages to the output queue in the order received.

If more than ten error messages are reported before any are read from the queue, the oldest error
messages are saved. The last error message indicates that too many error messages were received
for the queue.

Note The error queue is cleared when the VXI system is turned on and when the *CLS command is
sent.
267

SCPI Command Reference
VT2216A SCPI Commands
 SYSTem:VERSion? query

Returns the SCPI version to which the module complies.

Query Syntax: SYSTem:VERSion?

Example Statements: OUTPUT 70918;":SYSTEM:VERSION?"
OUTPUT 70918;"syst:vers?"

Return Format: YYYY.V

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: The Ys represent the SCPI year-version and the V represents the revision number for that year.

The VT2216A will return 1994.0.
268

SCPI Command Reference
VT2216A SCPI Commands
VINStrument[:CONFigure]:LBUS
[:MODE] RESet|NORMal|PIPE command/query

Configures the local bus.

Command Syntax: VINStrument[:CONFigure]:LBUS[:MODE] <Lbus Mode>

<Lbus Mode>::=RESet|PIPE|NORMal

Example Statements: OUTPUT 70918;":VINSTRUMENT:CONFIGURE:LBUS:MODE RESET"
OUTPUT 70918;"vins:lbus norm"

Query Syntax: VINStrument[:CONFigure]:LBUS[:MODE]?

Return Format: CHAR

Attribute Summary: Preset State: RESet
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The local bus interface has strict requirements as to the order in which modules in a VXI
mainframe have their local bus interface reset. On powerup or whenever any module in the
mainframe is put in the reset state, all modules should be placed into the reset state from left to
right. Then all modules can be put into the un-reset state from left to right.

Sending VINStrument:CONfigure:LBUS:MODE RESet, places the VT2216A local bus interface
into the LBUS RESet state. Sending either PIPE or NORMAL takes the local bus interface out of
the LBUS RESet state. In order for the VT2216A to use the local bus, the mode must be set to
NORMal.

Sending VINStrument:LBUS PIPE puts the local bus interface into a state such that all local bus
data from the module to the left is automatically routed to the module on the right. This is useful
if one desires to route local bus data past the VT2216A to other modules rather than have the
VT2216A participate in any local bus throughput or playback. In this mode, the local bus cannot
be used in a Sequence operation or via the LBUS:READ:BUFFer or LBUS:WRITe:BUFFer
commands. The behavior is undefined if this value is set to PIPE then a Sequence operation is
executed that either reads from or writes to the local bus.

When transitioning from PIPE to NORMal mode, one additional block will be piped after the
change. In order to make this transition easier to coordinate it is best to reset the local bus on all
modules then go to NORMal.

This command may be used instead of VINStrument:LBUS:RESet to place the VT2216A local
bus in the un-reset state.
269

SCPI Command Reference
VT2216A SCPI Commands
VINStrument:LBUS:RESet command

Resets the local bus.

Command Syntax: VINStrument:LBUS:RESet

Example Statements: OUTPUT 70918;":VINSTRUMENT:LBUS:RESET "
OUTPUT 70918;"vins:lbus:res"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The local bus interface has strict requirements as to the order in which modules in a VXI
mainframe have their local bus interface reset. On powerup or whenever any module in the
mainframe is put in the reset state, all modules should be placed into the reset state from left to
right. Then all modules can be put into the un-reset state from left to right.

This command toggles the local bus reset state for the VT2216A; first going into the reset state,
then back out. Once this is completed the local bus mode is NORMal.

This command is not required if the VINStrument:CONFigure:LBUS:MODE command used to
configure the local bus.
270

SCPI Command Reference
Errors
Errors

SCPI Command Errors

Error Number Description

-100 Command error. This is the generic syntax error for devices that cannot detect more specific
errors. This code indicates only that a Command Error as defined in IEEE 488.2, 11.5.1.1.4 has
occurred.

-101 Invalid character. A syntactic element contains a character that is invalid for that type; for
example, a header containing an ampersand, SETUP&. This error might be used in place of
errors -114, -121, -141 and perhaps others.

-102 Syntax error. An unrecognized command or data type was encountered; for example, a string
was received when the device does not accept strings.

-103 Invalid separator. The parser was expecting a separator and encountered an illegal character; for
example, the semicolon was omitted after a program message unit, *EMC 1 :CH1:VOLTS 5.

-104 Data type error. The parser recognized a data element different than one allowed; for example,
numeric or string data was expected but block data was encountered.

-105 GET not allowed. A Group Execute Trigger was received within a program message (see IEEE
488.2, 7.7).

-108 Parameter not allowed. More parameters were received than expected for the header; for
example, the *EMC common command only accepts one parameter, so receiving *EMC 0,,1 is
not allowed.

-109 Missing parameter. Fewer parameters were received than required for the header; for example,
the *EMC common command requires one parameter, so receiving *EMC is not allowed.

-110 Command header error. An error was detected in the header. This error message is used when
the device cannot detect the more specific errors described for errors -111 through -119.

-111 Header separator error. A character that is not a legal header separator was encountered while
parsing the header; for example, no white space followed the header, thus *GMC”MACRO” is an
error.

-112 Program mnemonic too long. The header contains more than twelve characters (see IEE488.2,
7.6.1.4.1).

-113 Undefined header. The header is syntactically correct, but it is undefined for this specific device;
for example, *XYZ is not defined for any device.

-114 Header suffix out of range. The value of a numeric suffix attached to a program mnemonic, see
Syntax and Style section 6.2.5.2, makes the header invalid.

-120 Numeric data error. This error, as well as errors -121 through -129, are generated when parsing
a data element that appears to be numeric, including the nondecimal numeric types. This
particular error message is used if the device cannot detect a more specific error.
271

SCPI Command Reference
Errors
-121 Invalid character in number. An invalid character for the data type being parsed was
encountered; for example, an alpha in a decimal numeric or a “9” in octal data.

-123 Exponent too large. The magnitude of the exponent was larger than 32000 (see IEEE 488.2,
7.7.2.4.1).

-124 Too many digits. The mantissa of a decimal numeric data element contained more than 255
digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

-128 Numeric data not allowed. A legal numeric data element was received, but the device does not
accept one in this position for the header.

-130 Suffix error. This error, as well as errors -131 through -139, are generated when parsing a suffix.
This particular error message is used if the device cannot detect a more specific error.

-131 Invalid suffix. The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2 or the suffix
is inappropriate for this device.

-134 Suffix too long. The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).

-138 Suffix not allowed. A suffix was encountered after a numeric element which does not allow
suffixes.

-140 Character data error. This error, as well as errors -141 through -149, are generated when parsing
a character data element. This particular error message is used if the device cannot detect a
more specific error.

-141 Invalid character data. Either the character data element contains an invalid character or the
particular element received is not valid for the header.

-144 Character data too long. The character data element contains more than twelve characters (see
IEEE 488.2, 7.7.1.4).

-148 Character data not allowed. A legal character data element was encountered where prohibited
by the device.

-150 String data error. This error, as well as errors -151 through -159, are generated when parsing a
string data element. This particular error message is used if the device cannot detect a more
specific error.

-151 Invalid string data. A string data element was expected, but was invalid for some reason (see
IEEE 488.2, 7.7.5.2); for example, an END message was received before the terminal quote
character.

-158 String data not allowed. A string data element was encountered but was not allowed by the
device at this point in parsing.

-160 Block data error. This error, as well as errors -161 through -169, are generated when parsing a
block data element. This particular error message is used if the device cannot detect a more
specific error.

-161 Invalid block data. A block data element was expected, but was invalid for some reason (see
IEEE 488.2, 7.7.6.2); for example, an END message was received before the length was
satisfied.

-168 Block data not allowed. A legal block data element was encountered but was not allowed by the
device at this point in parsing.

SCPI Command Errors

Error Number Description
272

SCPI Command Reference
Errors
-170 Expression error. This error, as well as errors -171 through -179, are generated when parsing an
expression data element. This particular error message is used if the device cannot detect a
more specific error.

-171 Invalid expression. The expression data element was invalid (see IEEE 488.2, 7.7.7.2); for
example, unmatched parentheses or an illegal character.

-178 Expression data not allowed. A legal expression data was encountered but was not allowed by
the device at this point in parsing.

-181 Invalid outside macro definition. Indicates that a macro parameter placeholder ($<number) was
encountered outside of a macro definition.

-183 Invalid inside macro definition. Indicates that the program message unit sequence, sent with a
*DDT or *DMC command, is syntactically invalid (see IEEE 488.2, 10.7.6.3).

SCPI Execution Errors

Error Number Description

-200 Execution error. This is the generic syntax error for devices that cannot detect more specific
errors. This code indicates only that an Execution Error as defined in IEEE 488.2, 11.5.1.1.5
has occurred.

-220 Parameter error. Indicates that a program data element related error occurred. This error
message is used when the device cannot detect the more specific errors described for errors -
221 through -229.

-221 Settings conflict. Indicates that a legal program data element was parsed but could not be
executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5.)

-222 Data out of range. Indicates that a legal program data element was parsed but could not be
executed because the interpreted value was outside the legal range as defined by the device
(see IEEE 488.2, 11.5.1.1.5.)

-223 Too much data. Indicates that a legal program data element of block, expression, or string type
was received that contained more data than the device could handle due to memory or related
device-specific requirements.

-224 Illegal parameter value. Used where exact value, from a list of possibles, was expected.

-240 Hardware error. Indicates that a legal program command or query could not be executed
because of a hardware problem in the device. Definition of what constitutes a hardware
problem is completely device-specific. This error message is used when the device cannot
detect the more specific errors described for errors -241 through -249.

-241 Hardware missing. Indicates that a legal program command or query could not be executed
because of missing device hardware; for example, an option was not installed. Definition of
what constitutes missing hardware is completely device-specific.

-250 Mass storage error. Indicates that a mass storage error occurred. This error message is used
when the device cannot detect the more specific errors described for errors -251 through -259.

-251 Missing mass storage. Indicates that a legal program command or query could not be executed
because of missing mass storage; for example, an option that was not installed. Definition of
what constitutes missing mass storage is device-specific.

SCPI Command Errors

Error Number Description
273

SCPI Command Reference
Errors
-252 Missing media. Indicates that a legal program command or query could not be executed
because of a missing media; for example, no disk. The definition of what constitutes missing
media is device-specific.

-253 Corrupt media. Indicates that a legal program command or query could not be executed
because of corrupt media; for example, bad disk or wrong format. The definition of what
constitutes corrupt media is device-specific.

-254 Media full. Indicates that a legal program command or query could not be executed because
the media was full; for example, there is no room on the disk. The definition of what constitutes
a full media is device-specific.

-258 Media protected. Indicates that a legal program command or query could not be executed
because the media was protected; for example, the write-protect tab on a disk was present.
The definition of what constitutes protected media is device-specific.

-272 Macro execution error. Indicates that a syntactically legal macro program data sequence could
not be executed due to some error in the macro definition (see IEEE 488.2, 10.7.6.3.)

-273 Illegal macro label. Indicates that the macro label defined in the *DMC command was a legal
string syntax, but could not be accepted by the device (see IEEE 488.2, 10.7.3 and 10.7.6.2); for
example, the label was too long, the same as a common command header or contained invalid
header syntax.

-276 Macro recursion error. Indicates that a syntactically legal macro program data sequence could
not be executed because the device found it to be recursive (see IEEE 488.2, 10.7.6.6).

-277 Macro redefinition not allowed. Indicates that a syntactically legal macro label in the *DMC
command could not be executed because the macro label was already defined (see IEEE
488.2, 10.7.6.4).

-278 Macro header not found. Indicates that a syntactically legal macro label in the *GMC? query
could not be executed because the header was not previously defined.

SCPI Device-Specific Errors

Error Number Description

-310 System error. Indicates that some error termed “system error” by the device, has occurred.
This code is device-dependent.

-311 Memory error. Indicates that an error was detected in the device’s memory. The scope of this
error is device-dependent.

-315 Configuration memory lost. Indicates that nonvolatile configuration data saved by the device
has been lost. The meaning of this error is device-specific.

-321 Out of memory.

-330 Self-test failed.

-350 Queue overflow. A specific code entered into the queue in lieu of the code that caused the error.
This code indicates that there is no room in the queue and an error occurred but was not
recorded.

SCPI Execution Errors

Error Number Description
274

SCPI Command Reference
Errors
SCPI Query Errors

Error Number Description

-400 Query error. This is the generic query error for devices that cannot detect more specific errors.
This code indicates only that a Query Error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has
occurred.

-410 Query INTERRUPTED. Indicates that a condition causing an INTERRUPTED Query error
occurred (see IEE 448.2, 6.3.2.3); for example, a query followed by DAB or GET before a
response was completely sent.

-420 Query UNTERMINATED. Indicates that a condition causing an UNTERMINATED Query error
occurred (see IEEE 488.2, 6.3.2.2); for example, the device was addressed to talk and an
incomplete program message was received.

-430 Query DEADLOCKED. Indicates that a condition causing an DEADLOCKED Query error
occurred (see IEEE 488.2, 6.3.1.7); for example, both input buffer and output buffer are full and
the device cannot continue.

440 Query UNTERMINATED after indefinite response. Indicates that a query was received in the
same program message after an query requesting an indefinite response was executed (see
IEEE 488.2, 6.5.7.5).

VT2216A-Specific Errors

Error Number Description

6201 Device not open. A read, write, or other command was used to access a device that was not
already open. See MMEM:SCSI:OPEN.

6202 Device not ready. A command was used to access a device that had been opened with the
dontStartUnit bit set. Try closing the device and re-opening it without that bit set in the mode
word.

6203 Device already open. A second open was attempted on a device that was already open.

6204 Device incompatible. This error is returned if a MMEM:TUN:OPEN is sent with two devices on
the same SCSI bus or with the devices swapped (specifying the SCSI B device first and then the
SCSI A device). This error is returned from MMEM:SESS:ADD if a two device Transfer Unit is
added to a Session that already contains one device Transfer Units or vice versa; or if a single
device Transfer Unit on SCSI A is added to a Session containing single device Transfer Units on
SCSI B or vice versa. Also, there are a few commands that will only execute on a certain type of
device, MMEM:SCSI:ERAS will only execute on optical memory devices.

6205 Device error. A device returned an error after attempting to perform some operation for which
there is no further information.

6206 Session full. A MMEM:SESS:ADD was attempted on a Session that already contained the
maximum number of Transfer Units.

6207 Session busy. A SCPI command attempted to use a Session that was already performing some
SCSI operation. Use of the Session Busy bit in the Operation Status register may help avoid
this error.

6208 Session empty. A SCPI command attempted to use a Session that did not contain any Transfer
Units.
275

SCPI Command Reference
Errors
6209 Sequence full. A SEQ:ADD was attempted on a Sequence that already contained the maximum
number of Sequence operations.

6210 Sequence busy. A SEQ:BEG command was attempted when a Sequence was already running.

6211 Sequence empty. A SEQ:BEG command was attempted on a Sequence containing no
Sequence operations.

6212 Local bus busy. The local bus chip was not in the paused state when a SEQ:BEG was
attempted.

6213 Require even block count. A SCPI command with an odd number of SCSI blocks attempted an
opertion on a Session containing split Transfer Units. Only even block counts are accepted on
split Sessions.

6214 Device timeout. A SCSI device timed out when a SCSI command was sent to it.

6215 Sequence bus error. The sequencer detected a bus error while running a Sequence. This
could be due to a VXI device not existing at the expected logical address or due to memory not
existing at an expected location. Check the operations in the Sequence for errors.

6216 (This error is only applicable to the Agilent/HP 1562A/B/C. Maximum safe disk temperature
exceeded. This error indicates that the disk drive has exceeded 72°C. It has been spun down
if it was spinning. The temperature check is done every 30 minutes after powerup. This check
can only be done for HP disks due to the use of non-SCSI-defined commands. The SCSI
controller and bus address will be included in the error message. For example, the results of
SYST:ERR? might return:
16, "Maximum safe disk temperature exceeded; SCSI B, bus address 0"

6217 Write to a read-only device. Either the device was opened with the read-only bit in the open
mode set, or the device is write-protected (i.e. a tape in the DAT is write protected) and a write
operation was attempted to this device.

VT2216A-Specific Errors

Error Number Description
276

LIF Library Reference

LIF Library Reference
Getting Started

Why Use the LIF Library?

LIF (Logical Interchange Format) is a directory and file format used to exchange files among
various computer systems and instruments. Any VT2216A Session, including one or more disks,
may be formatted as a LIF volume.

LIF library functions provide a higher level of access to VT2216A data. For example, Sessions
can be set up by using LIF library functions as an alternative to using MMEM:SCSI:OPEN,
MMEM:TUN:OPEN and MMEM:SESS:ADD. Data can then be transferred using either LIF
functions, Sequences, or SCPI commands.

An advantage of using the LIF library to access a VT2216A Session as a LIF volume is that
multiple data acquisitions may easily be stored with each group of data identified by its own name
and size in a directory. Furthermore, a single disk volume may be directly accessed by a host
computer when connected via a SCSI cable.

Special Considerations for the LIF Library

The implementation of the LIF library for the VT2216A involves some special constraints and
conventions:

• The number of open volumes is limited to the number of available Sessions on the VT2216A.
A volume describes a single file-system which may exist on a single device or may cross
several devices as do Sessions on the VT2216A. Many files may be accessed simultaneously
on one volume.

• The LIF library assumes that every SCSI block in a Session is the same size. This implies that
for Sessions involving striping each Transfer Unit must have the same SCSI block size. This
is only an issue for striped Sessions since both devices within a Transfer Unit must already be
the same size due to restrictions imposed by the VT2216A. The additional restriction
imposed by the LIF libraries requires that all Transfer Units within a Session also have the
same SCSI block size.

• This library assumes that every volume starts at the beginning of all devices which make up
the volume. For example, if a Session is built from individual devices, the
MMEM:TUN:OPEN command will always be sent with the starting SCSI block parameter set
to 0.

• The LIF library can read and write only BDAT files. Files of other types may be written to
volumes but they cannot be accessed by the LIF library.

• Each BDAT file on a volume begins with a 256-byte block of additional header information
including, most importantly, file size. The library protects this header from reads and writes
and designates that seeks to the beginning of the file go to the block following this BDAT
header information.

• All LIF functions set ‘e1562_errno.’ Error codes are listed at the end of this chapter.
278

LIF Library Reference
Naming Conventions

Several functions expect that a name be passed as a parameter. In some cases, the name refers to
a single file (i.e., e1562_fopen) and in other cases the name refers to a volume only (i.e.,
e1562_pack).

Volume names and file names use a special naming convention to indicate which SCSI device is
being referenced and also provides for a single file system consisting of many SCSI devices. The
special conventions include:

• A device pair always starts with a capital ‘V’ followed by the A SCSI bus disk address then
the B SCSI bus disk address.

• Addresses are designated by lower case hexadecimal numbers.

• Unused devices are designated by the placeholder ‘x’.

• File size designations (when required) are decimal ASCII.

• File names are made up of the volume name followed by a colon followed by a base LIF file
name.

• A volume consisting of a striped Session has a name that includes several of the disk pairs
described above, each followed by a burst block count. This is analogous to the <Count>
parameter used in MMEM:SESS:ADD.

Volume name examples:

A single device at address 3 on controller B:
 "Vx3" (SCSI A is absent; SCSI B at address 3)

A split pair of devices with the controller/address pairs of A/5 and B/11:
 "V5b" (SCSI A at address 5; SCSI B at address 11)

A split and striped disk set using a pair of disks at A/1 and B/7 and a second pair at A/14 and B/12
with a burst block count of 512:
 "V17512Vec512" (First pair: SCSI A at address 1; SCSI B at address 7;
 Second pair: SCSI A at address 14; SCSI B at address 12)

File name example:

A file named "file1" on a volume with data split between a pair of devices:
 "Vaf:file1"

Note The most current LIF Library is available on-line at www.vxitech.com.
279

http://www.vxitech.com

LIF Library Reference
LIF Library Quick Reference

Function Description Page

Library Management

e1562_closeLibrary Release all dynamic data structures 286

e1562_initializeLibrary Initialize the internal data structures 298

e1562_mapModule Associate a module with an ID 299

Volume Management

e1562_available Return the number of LIF blocks available on the volume 283

e1562_copy Copy a file or volume 285

e1562_defaultVolume Define the default volume 287

e1562_dirFirst Return information from the first valid directory entry on a volume 288

e1562_dirInit Replace information on a volume with an empty LIF file system 289

e1562_dirNext Return information from a subsequent valid directory entry on a
volume

290

e1562_pack Reorganize the file system to delete empty space 300

e1562_remove Delete the specified file from the LIF directory 301

e1562_rename Change the name of a file 302

File Management

e1562_allocated Return the number of 256-byte blocks allocated to the file 282

e1562_block Return the current VT2216A Session block number 284

e1562_fclose Flush the stream and close the associated file 291

e1562_fflush Cause any unwritten data for a stream to be written to its
associated file

292

e1562_fgetpos Store the current file position indicator for the stream 293

e1562_fopen Open the file specified by the string name 294

e1562_fread Read data from a file into an array 295

e1562_fsetpos Sets the file position indicator for the stream 296

e1562_fwrite Write data to a file from an array 297

e1562_setEOF Set the end-of-file marker for the file 303
280

LIF Library Reference
LIF Commands Available from the Command Line

Command Description Page

e1562ls List contents of current volume 307

e1562mv Rename a file 308

e1562cp Copy a file 305

e1562in Initialize a volume 306

e1562pk Pack a volume 309

e1562rm Remove a file 310
281

LIF Library Reference
VT2216A LIF Functions
VT2216A LIF Functions

e1562_allocated

Returns the physical file length.

Synopsis: #include "e1562lif.h"

unsigned long e1562_allocated(e1562_FILE *stream);

Description: This function returns the number of 256-byte blocks allocated to the file. This may be different
from the number of blocks actually occupied by data. This number is the physical length of the
file, whereas the logical length of the file is the amount of data contained in the file.

Notes: To determine how much data is in the file, use e1562_fsetpos to go to the end of the file, then
call e1562_fgetpos to determine the offset from the beginning of the file in bytes.

Example: e1562_FILE *fp;
unsigned long LIF blocks;

fp = e1562_fopen(2,"Vx0:jan20temp","r");
LIF blocks = e1562_allocated(fp);

Return Value: Number of 256-byte blocks allocated to the file.

See Also: e1562_fopen on page 294
282

LIF Library Reference
VT2216A LIF Functions
e1562_available

Returns available space and available contiguous space on a volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_available(e1562ID id, const char *volname,
unsigned long *totalBlocks,
unsigned long *largestBlock);

Description: This function returns the number of LIF blocks (256 bytes) available on the entire volume as well
as the largest sequential number of blocks available. The value returned in ‘largestBlock’ is the
size of the longest file which can be created on this volume. It is possible that a larger file might
be created after calling e1562_pack.

Example: e1562_errors error;
unsigned long Total, Large;

error = e1562_mapModule(1,"Vx1", 48);
error = e1562_available(1,"V24512Vc3512", &Total, &Large);

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_pack on page 300
e1562_mapModule on page 299
283

LIF Library Reference
VT2216A LIF Functions
e1562_block

Returns the next volume block number to be used.

Synopsis: #include "e1562lif.h"

unsigned long e1562_block(e1562_FILE *stream,
 unsigned long *blockSize,
 unsigned long *byteOffset);

Description: This function returns the physical location on a VT2216A volume to or from which the next
character would be transferred on a one byte read or write. The ‘blockSize’ argument will reflect
the number of bytes in the volume’s block. For a split volume the ‘blockSize’ will be twice the
size of a volume consisting of a single device.

The value pointed to by the ‘byteOffset’ argument will be set to the byte offset into the returned
block number at which the next byte would be read or written on the current volume. The block
returned is a SCSI block offset from the beginning of the VT2216A Session associated with the
LIF volume on which the file resides.

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *file;
unsigned long block, bytes;

file = e1562_fopen(0,"V0x:pressure", "r");
block = e1562_block(file, &bytes);

Return Value: If an error is detected, 0xffffffff will be returned, otherwise the Session block number is returned.

See Also: e1562_fopen on page 294
284

LIF Library Reference
VT2216A LIF Functions
e1562_copy

Copy a file or volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_copy(e1562ID id, const char *filename,
 const char *newfile);

Description: The file ‘filename’ is duplicated as ‘newfile’. This function copies a file or an entire volume.

If ‘filename’ is a file, ‘newfile’ may be either a filename or a volume name. If ‘filename’ is a
volume name (must include the ‘:’) then ‘newfile’ must be a volume name.

If ‘filename’ and ‘newfile’ are on different volumes, this function requires that two VT2216A
Sessions be available for use.

Notes: If ‘newfile’ already exists, an error is returned.

It is not possible to copy from one VT2216A to another with this function.

Example: Copy a file to another file:
error = e1562_copy(1,"V1x:pump3", "V1x:pump3_bak");

Copy a file to a volume:
error = e1562_copy(0,"V55:frf4_5","V1x");

Copy a volume to a volume:
error = e1562_copy(3,"Vab:","Vxc:");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 299
285

LIF Library Reference
VT2216A LIF Functions
e1562_closeLibrary

Closes all volumes and files and deallocates all dynamic memory.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_closeLibrary(void);

Description: This function cleans up all data structures in preparation for program termination.

Example: e1562_closeLibrary();
286

LIF Library Reference
VT2216A LIF Functions
e1562_defaultVolume

Define the default volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_defaultVolume(e1562ID id, const char *volname);

Description: This function defines ‘volname’ as the default volume. If ‘volname’ does not specify a valid
volume, an error will be returned. The default volume is initially null upon startup. Calling this
function successfully allows the programmer to reference names on that volume without being
required to specify the volume name as part of the filename. Any file specified without a volume
name will be assumed to reside on the default volume. It is still possible to place a volume name
in the filename to reference a specific volume which may not be the default volume.

Example: e1562_errors err;
err = e1562_defaultVolume(1, "V05512V12512");

Return Value: This function returns zero if successful and an error code if it fails.

See Also: e1562_mapModule on page 299
287

LIF Library Reference
VT2216A LIF Functions
e1562_dirFirst

Returns information from the first valid directory entry.

Synopsis: #include "e1562lif.h"

e1562_dirEntry *e1562_dirFirst(e1562ID id, const char *volname,
 e1562_dirEntry *buffer);

Description: This function returns information from the first valid directory entry on volume ‘volname.’ The
received pointer to ‘e1562_dirEntry’ must point to an actual e1562_dirEntry structure (memory is
allocated in the calling function). This function, in conjunction with e1562_dirNext, is used
to traverse a LIF directory.

The following fields in the structure returned by this function provide information about a file in
the directory.

Notes: Deleted directory entries or otherwise invalid directory entries will never be returned from this
function.

Example: e1562_dirEntry entry;
e1562_dirEntry *entryp;

entryp = e1562_dirFirst(2, "V13", &entry);

Return Value: If an error is found or there are no files in the directory the return value will be zero, otherwise a
pointer to that structure will be returned.

See Also: e1562_dirNext on page 290
e1562_mapModule on page 299

Type Definition

unsigned char name [12] name of file

unsigned long date stamp create date in BCD - YYMMDD

unsigned long time stamp create time in BCD - HHMMSS

signed long type type of file

unsigned long LIFstart first 256-byte block of file

unsigned long LIFallocated number of 256-byte blocks allocated

unsigned long sizeHigh MS half of the byte count

unsigned long sizeLow LS half of the byte count

unsigned long volume volume number, MSB=1 is last volume

unsigned long reserved not used

unsigned long entryNumber index into directory

unsigned long session session number

e1562 id which VT2216A

void * vid volume id
288

LIF Library Reference
VT2216A LIF Functions
e1562_dirInit

Replace information on a volume with an empty LIF file system.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_dirInit(e1562ID id, const char *volname);

Description: This function replaces all information on the designated volume with an empty LIF file system.

Note Any information previously existing on the volume will be lost.

Example: e1562_errors err;
err = e1562_dirInit(1, "Vxe");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 299
289

LIF Library Reference
VT2216A LIF Functions
e1562_dirNext

Retrieve the next entry from a LIF directory.

Synopsis: #include "e1562lif.h"

e1562_dirEntry *e1562_dirNext(e1562_dirEntry *previous);

Description: Assuming the received pointer to ‘e1562_dirEntry’ already contains valid directory information
from a volume, this function replaces the structure with information about the next valid file in the
directory.

The same structure type definitions apply to this function as listed in the description of the
function e1562_dirFirst.

It is important that the contents of the structure returned by a previous call to e1562_dirFirst
or e1562_dirNext NOT be modified before calling this function.

Notes: Deleted directory entries or otherwise invalid directory entries will never be returned from this
function.

Example: e1562_dirEntry entry;
e1562_dirEntry *entryp;

entryp = e1562_dirFirst(2, "V13", &entry);
entryp = e1562_dirNext(entryp);

Return Value: If there are no more files in the directory zero will be returned, otherwise the received pointer is
returned.

See Also: e1562_dirFirst on page 288
290

LIF Library Reference
VT2216A LIF Functions
e1562_fclose

Flush the stream and close the associated file.

Synopsis: #include "e1562lif.h"

int e1562_fclose(e1562_FILE *stream);

Description: Any unwritten data is written to the file; any unread data is discarded. Any buffers are
deallocated.

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *f;

f = e1562_fopen (3, "Vx0:trace5,1048576", "w");
if (e1562_fclose(f) ! = 0)
 fprintf(stderr "Close failed\n");

Return Value: This function returns 0 if successful; returns -1 if any errors were detected

See Also: e1562_fopen on page 294
291

LIF Library Reference
VT2216A LIF Functions
e1562_fflush

Causes any unwritten data for the stream to be written to its associated file.

Synopsis: #include "e1562lif.h"

int e1562_fflush(e1562_FILE *stream);

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *fp

fp = e1562_fopen (2, "V5x:rotor", "r+");
 .
 .

 read/write data

 .
 .
e1562_fflush(fp);

Return Value: This function returns 0 if successful and -1 if a write error occurs.

See Also: e1562_fopen on page 294
292

LIF Library Reference
VT2216A LIF Functions
e1562_fgetpos

Stores the current value of the file position indicator.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_fgetpos(e1562_FILE *stream,
 e1562_fpos_t *byteOffset);

Description: This function stores the current value of the file position indicator for the stream into the object
pointed to by ‘byteOffset.’ The value stored contains information usable by the e1562_
fsetpos function for repositioning the stream.

Notes: The file must be opened with e1562_fopen before this function can be executed.

This function differs from the ANSI C fgetpos in two ways:

• The returned information is defined to be the byte offset from the beginning of the file at
which the file position indicator is currently located.

• Upon failure the value of errno is NOT modified.

Example: e1562_FILE *data;
e1562_fpos_t position;

data = e1562_fopen(0, "Vbc:spl_5", "w+");
e1562_fgetpos(data, &position);

Return Value: This function returns 0 if successful and an error number if it fails.

See Also: e1562_fsetpos on page 296
e1562_fopen on page 294
293

LIF Library Reference
VT2216A LIF Functions
e1562_fopen

Open the file specified by the string name and designate the file size.

Synopsis: #include "e1562lif.h"

e1562_FILE *e1562_fopen(e1562ID id, const char *name,
 const char *mode);

Description: The filename may include the volume name as a prefix to the file name separated by a colon, or
may rely on the default volume (see e1562_defaultVolume on page 287). The argument ‘mode’
points to a string with one of the following options:

Opening a file with ‘r’ as the first character in mode fails if the file does not exist or cannot be
read. Opening a file with ‘a’ as the first character causes all writes to be forced to the end-of-file,
regardless of any intervening calls to the e1562_fsetpos function. When a file is opened for
update (‘+’ contained in the mode string), both input and output may be performed on the file.
However output may not be directly followed by input unless either the function e1562_
fsetpos or e1562_fflush is called, and input may not be directly followed by output unless
the input encountered the end-of-file or e1562_fsetpos is called.

Notes: This is the only LIF library function which may include file size in the file name.

A filename may include up to 54 characters: a prefix of up to 28 characters for the volume
specifier, a ten character name conforming to the LIF restriction, a suffix of up to thriteen
characters to specify the file length and three additional characters to accommodate a colon, a
comma and the null terminator.

Up to ten files may be open simultaneously.

Example: e1562_FILE *f;

Open file for reading only:

 f = e1562_fopen(1, "Vfx:piston2", "r");

Create file for writing:

 f = e1562_fopen(2, "Vac:chan7,1048576", "w");

Open file for reading and writing:

 f = e1562_fopen(0, "Vx2:station4", "r+");

Return Value: If successful this function returns a pointer to the object controlling the stream and returns a null
pointer if errors are detected.

See Also: e1562_defaultVolume on page 287
e1562_mapModule on page 299

r Open file for reading.

w Truncate to zero length or create file for writing.

a Append; open or create file for writing at end-of-file.

r+ Open file for update (reading and writing).

w+ Truncate to zero length or create file for update.

a+ Append; open or create file for update; writing at end-of-file.
294

LIF Library Reference
VT2216A LIF Functions
e1562_fread

Reads data from the file associated with the stream into an array.

Synopsis: #include "e1562lif.h"

size_t e1562_fread(void *buff, size_t bufelSize, size_t count,
 e1562_FILE *stream);

Description: Data of a size up to ‘count’ elements is read from the file associated with the stream into the array
pointed to by ‘buff’, whose size is specified by ‘bufelSize’. The file position indicator for the
steam is advanced by the number of bytes successfully read.

Notes: If an error occurs, the resulting value of the file position indicator is indeterminate. If a partial
element is read, its value is indeterminate.

The file must be opened with e1562_fopen before this function can be executed.

Example: unsigned char data[8192]
e1562_FILE *file;
size_t count;

file = e1562_fopen("V3x:vib", "r");
count = e1562_fread(data, sizeof(data[0]), 8192, file);

Return Value: This function returns the number of elements successfully read, which may be less than ‘count’ if
a read error or end-of-file is encountered. If ‘count’ or ‘bufelSize’ is zero, the function returns
zero and the contents of ‘buff’ and the state of the stream remain unchanged.

See Also: e1562_fopen on page 294
295

LIF Library Reference
VT2216A LIF Functions
e1562_fsetpos

Sets the file position indicator.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_fsetpos(e1562_FILE *stream,
 N const e1562_fpos_t *byteOffset);

Description: This function sets the file position indicator for the stream to the value of the object pointed to by
‘byteOffset.’ A successful call to e1562_fsetpos clears the end-of-file indicator for the
stream. The next operation on an update stream may be either input or output.

Notes: The file must be opened with e1562_fopen before this function can be executed.

If the file position is set beyond the end of file, an error will be returned, but the file position will
be set to the end of file.

This function differs from the ANSI C fsetpos in two ways:

The data received in the object pointed to by ‘byteOffset’ need not have been obtained from a call
to e1562_fgetpos but may be set by the caller as a byte offset from the beginning of the file.

Upon failure the value of errno is NOT modified.

Example: e1562_FILE *fp;
e1562_fpos_t offset;

offset.positionHigh = 0;
offset.positionLow = 4096;

fp = e1562_fopen("V6x:temp", "r");
e1562_fsetpos(fp, &offset);

Return Value: This function returns 0 if successful and an error number if it fails.

See Also: e1562_fgetpos on page 293
e1562_fopen on page 294
296

LIF Library Reference
VT2216A LIF Functions
e1562_fwrite

Writes data from an array into the file associated with the stream.

Synopsis: #include "e1562lif.h"

size_t e1562_fwrite(const void *buff, size_t bufelSize,
 size_t count, e1562_FILE *stream);

Description: Data of a size up to ‘count’ elements is written to the file associated with the stream from the
array pointed to by ‘buff’, whose size is specified by ‘bufelSize.’ The file position indicator for
the steam is advanced by the number of bytes successfully written.

Notes: If an error occurs the resulting value of the file position indicator is indeterminate.

The file must be opened with e1562_fopen before this function can be executed.

Example: #define DATA_SIZE 65536
e1562_FILE *file;
long data[DATA_SIZE];
size_t count;

file = e1562_fopen("Vxd:data", "w");
count = e1562_fwrite(data, sizeof(data[0]), DATA_SIZE, file);
if (count < DATA_SIZE)
 fprintf(stderr, "Error writing data: %ld\n", e1562_errno);

Return Value: This function returns the number of elements successfully written, which will be less than count
only if a write error is encountered.

See Also: e1562_fopen on page 294
297

LIF Library Reference
VT2216A LIF Functions
e1562_initializeLibrary

Initializes internal data structures which are referenced by the other functions in the VT2216A
LIF library.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_initializeLibrary(void);

Description: This function allocates memory and initializes data structures in preparation for calling other
functions in the LIF library.

Notes: This function MUST be called before using other functions in the LIF library.

Example: e1562_initializeLibrary();
298

LIF Library Reference
VT2216A LIF Functions
e1562_mapModule

Associates a VT2216A module with the given id.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_mapModule(e1562ID id, const char *interface,
 unsigned char logicalAddr);

Description: Four modules may be open at a time; the valid range for ‘id’ is 0-3. The argument ‘interface’ is a
string appropriate to be passed to the SICL iopen function. If ‘id’ already refers to a valid
VT2216A, the module will no longer be accessible from the previous id upon successful
completion of this function.

Notes: This function MUST be called before using id as an argument to another function since initially
all ‘id’ are null.

Example: e1562_mapModule(0, "vxi", 32);

Return Value: If ‘logical address’ does not refer to a VT2216A, an error will be returned.
299

LIF Library Reference
VT2216A LIF Functions
e1562_pack

Removes empty space left by deleted files.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_pack(e1562ID id, const char *volname);

Description: This function reorganizes the file system specified by ‘volname’ such that there is no empty space
caused by deleted files.

Unlike other file systems, data in a LIF file system is all sequential. This means that as files are
created and deleted the largest available contiguous file space becomes smaller due to
fragmentation. This function makes all the files contiguous at the beginning of the file system,
possibly allowing a larger file to be created at the end of the file system.

Notes: Once this operation begins it must not be interrupted until it has completed or the file system will
be corrupted.

Example: e1562_pack(2, "V05256V12256");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 299
300

LIF Library Reference
VT2216A LIF Functions
e1562_remove

Delete the specified file from the LIF directory.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_remove(e1562ID id, const char *filename);

Description: The space used by the file ‘filename’ is released to the file system for use by other files.

Example: e1562_remove(0, "Vx9:myfile");

Return Value: This function returns 0 if successful. If the file is not found or the file is open an error is returned
and the file is not removed.

See Also: e1562_mapModule on page 299
301

LIF Library Reference
VT2216A LIF Functions
e1562_rename

Change the name of a file.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_rename(e1562ID id, const char *oldname,
 const char *newname);

Description: This function changes the name of a file from ‘oldname’ to ‘newname.’ ‘Newname’ need not
contain the volume in its name.

The following conditions generate an error:

• ‘oldname’ does not exist on either the default volume or on the volume specified in the name

• the volume name for ‘newname’ (if used) does not match the volume on which ‘oldname’
resides

• ‘newname’ is the same as a current file in the directory

• the file ‘oldname’ is open

Example: e1562_rename(3, "Vex:myfile", "yourfile");

Return Value: If successful this function returns a 0 and ‘oldname’ no longer refers to an existing file, otherwise
an error is generated and the original filename is not changed.

See Also: e1562_defaultVolume on page 287
e1562_mapModule on page 299
302

LIF Library Reference
VT2216A LIF Functions
e1562_setEOF

Sets the end-of-file marker for the file.

Synopsis: #include "e1562lif.h"

e1562_errors e1562EOF(e1562_FILE *stream,
 const e1562_fpos_t *byteOffset);

Description: This function is useful in establishing a logical end of file when the data is written to the file by
some method other than the LIF file system (such as by using VT2216A sequences).

Notes: The EOF cannot be set beyond the size of the file specified when it was created.

Example: e1562_FILE *f;
e1562_fpos_t offset;

f = e1562_fopen("Vax:auto_jun14", "w");
offset.positionHigh = 0;
offset.positionLow = 8388608;
e1562_setEOF(f, &offset);

Return Value: This function returns zero if successful and an error code if it fails.

See Also: e1562_fopen on page 294
303

LIF Library Reference
VT2216A LIF Commands
VT2216A LIF Commands

The following six commands allow certain actions to be performed on volumes directly from the
command line, without having to write and compile a C program.

The same volume and file name conventions apply as for the previous functions. See Naming
Conventions on page 279.
304

LIF Library Reference
VT2216A LIF Commands
e1562cp

Copy files.

Synopsis: e1562cp [-Lisuv] file 1 [file2 ...] target

Description: Copy file1 to target. If target specifies either a LIF volume or is "." (for the current
directory on the host), file1 is copied to that directory, otherwise a file with the name target
is created with the contents of file1. If more than one file is specified, target must be a
volume name or ".". e1562cp may be used to copy files from the VT2216A to the host, from the
host to the VT2216A or from the VT2216A to the VT2216A (either the same volume or a
different volume).

Each file and/or target must be prefixed with a LIF volume specifier to indicate files on the
VT2216A. A target consisting of only a volume name must include the ":" at the end of the name.

Example: Copy a file from the host to a VT2216A volume:

e1562cp jan20note Vx0:jan20note

or

e1562cp jan20note Vx0:

Copy several files from a VT2216A to the host:

e1562cp -L96 -s524288 V24:engNotes V24:engVib V24:engTemp .

Copy a file between VT2216A volumes:

e1562cp Vx0:SPLmar12 Vx4:SPLmax

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-s Specifies the size of the block used to copy files between the host and the VT2216A. The default is 8192.

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
305

LIF Library Reference
VT2216A LIF Commands
e1562in

Create a LIF file system on the specified volume.

Synopsis: e1562in [-Liuv] volume

Description: Initializes a LIF file system on the specified volume.

Caution This will destroy the contents of the disk.

Example: e1562in V00

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
306

LIF Library Reference
VT2216A LIF Commands
e1562ls

List contents of a LIF volume.

Synopsis: e1562ls [-Liluv] volume

Description: This command lists the files on the specified LIF volume to STDOUT. One file per line is printed
to STDOUT. The volume name must not contain the ":" which normally separates a file name
from the volume name.

Example: e1562ls V00

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-l Specifies the long format of directory listing. The default is to list just the names of the files.

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
307

LIF Library Reference
VT2216A LIF Commands
e1562mv

Rename a file on a LIF volume.

Synopsis: e1562mv [-LVivu] file newname

Description: This command renames an existing file. file must exist and the newname must not. If
newname contains a volume name prefix, it must be the same as that of file.

Example: e1562mv Va4:spl43 spl43.old

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-V Specifies a default volume so that several files may be specified without including the volume in each one.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
308

LIF Library Reference
VT2216A LIF Commands
e1562pk

Coalesce files on a LIF volume.

Synopsis: e1562pk [-Liuv] volume

Description: This command coalesces files on the specified LIF volume by packing together files in the
directory and on the volume into contiguous space at the beginning of the volume. This allows a
larger file to be created later if there were several deleted files or if a small file has been used to
fill the spot originally used for a large file.

Caution Once this command starts working it must not be interrupted or the file system will be corrupted.

Example: e1562pk Vx3

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
309

LIF Library Reference
VT2216A LIF Commands
e1562rm

Remove one or more files from a LIF volume or volumes.

Synopsis: e1562rm [-LViuv] file1 [file2 ...]

Description: This command deletes each of the files specified. Usually, each file will be specified with the
volume prefix as ‘volume:file’. If the -V option is used to specify the volume name, all files
which do not contain a volume will use the specified default volume.

Example: Remove a single file:
e1562rm -L32 -ivxi2 Vx2:temp.old

Remove multiple files, most from V8x, one from Vxc:
e1562rm -VV8x abc def ghi Vxc:xyz mno

Option Description

-L Specifies the logical address of the VT2216A. Default address is 144.

-V Specifies a default volume so that several files may be specified without including the volume in each one.

-i Specifies the interface which connects to the VXI cardcage containing the VT2216A. The default is "vxi."

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.
310

LIF Library Reference
LIF Library Errors
LIF Library Errors

Error
Number Name Description

0 e1562Err_noError No error was generated

1 e1562Err_noSessionAvailable A Session is not available

2 e1562Err_invalidVolumeName The specified volume name is not valid

3 e1562Err_missingVolumeName No volume name was specified

4 e1562Err_VolumeOpen The specified volume is already open

5 e1562Err_interfaceError An error was detected on the interface

6 e1562Err_outOfMemory Memory space is insufficient for the designated function

7 e1562Err_systemError A system error occurred

8 e1562Err_idInvalid The specified id is invalid

9 e1562Err_fileSizeInvalid The specified file size is invalid

10 e1562Err_fileNameInvalid The specified file name is invalid

11 e1562Err_fileModeInvalid The specified file mode is invalid

12 e1562Err_fileDoesNotExist The specified file does not exist

13 e1562Err_fileDoesNotExistNoSize The specified file has no size designation

14 e1562Err_fileExistsWithSize The specified file already has a specified file size; remove
size designation

15 e1562Err_fileEOF The end of the file was encountered before the transfer was
completed

16 e1562Err_fileTypeBad The file type specified is not valid

17 e1562Err_endOfDirectory The end of the directory was encountered before the
transfer was completed

18 e1562Err_volumeNotLIF The specified volume is not of a LIF type

19 e1562Err_renameVolumeDifferent The file to be renamed is specified with two different volume
designations

20 e1562Err_seekPastEOF The read/write location designated is past the end of file
marker

21 e1562Err_setEOFpastSize The EOF specified is beyond the created size of the file

22 e1562Err_fileOpen A file which is open has been designated to delete, rename
or copy
311

LIF Library Reference
LIF Library Errors
312

Glossary

Glossary
A16

16-bit address space. A16 has an upper limit of 6,5535.

A24

24-bit address space. A24 has an upper limit of 16,777,215.

A32

32-bit address space. A32 has an upper limit of 4,294,967,295.

ADC

an Analog-to-Digital Converter module used as the input to a VXI system. Examples include the
VT1413C and Agilent/HP E1432A.

address space

a range of addresses in memory. See also A16, A24, A32, and Shared RAM.

bit bucket

a place to put unwanted data.

blocksize (Local Bus)

the amount of data, in bytes, moving in a block on the Local Bus.

blocksize (SCSI)

the size of a block of data on a disk or DAT.

cache

a block of RAM used to allow fast transfers to a slow device.

CVT

Current Value Table.

D16

a single 16-bit transfer over the VXI system bus.

D32

a single 32-bit transfer over the VXI system bus.

differential-wide

a SCSI connector in which the signal is difference between high and low wires. Wide refers to a
16-bit connection (narrow is 8 bits).
314

Glossary
DMA

Direct Memory Access.

embedded computer

a computer (functioning as controller) which is installed in the VXI mainframe. An example is
the V743.

GPIB

General Purpose Interface Bus.

implied mnemonic

keywords in a SCPI command which can be deleted without changing the effect of the command.
Implied mnemonics are identified by brackets [] in SCPI syntax diagrams.

internal device address

a SCSI or DAT address.

LBUS

see Local Bus.

LIF libraries

Logical Interchange Format, a directory and file format used to exchange files among various
Hewlett-Packard computer systems and instruments. VT2216A Sessions may be accessed by
using LIF functions.

Local Bus

a daisy-chain bus structure connecting the modules in a VXI system.

logical address

the VXI address of a module.

memory space

see address space.

monitoring

A method of transferring data which allows the host computer to access part of the data during
transfer operations. This is done by transferring part of the data to host memory at the same time
as to the VT2216A Session.

MXI

an interface to extend the VXI bus to the memory space of a host computer.
315

Glossary
primary address

one of three parts of VT2216A address in a SCPI environment. The primary address, typically 09,
indicates which GPIB port in the system controller is used to communicate with the Slot 0 Control
Module, for example the Agilent/HP E1406A.

SCPI

Standard Commands for Programmable Instruments, a standard instrument command language.

SCSI

Small Computer System Interface.

secondary address

one of three parts of VT2216A address in a SCPI environment. The secondary address indicates
the device-specific address. In this case, the VXI logical address.

select code

one of three parts of VT2216A address in a SCPI environment. The select code specifies the
interface. Seven is a typical number for the GPIB interface.

Sequence

specifies the order of operations for a throughput or playback Session.

Session

 provides the ability to combine one or more Transfer Units together into one logical data
repository.

shared memory

see Shared RAM.

Shared RAM

Memory space that is available to be shared with other devices, as a way of passing data. Shared
RAM has an upper limit of 262143. (RAM = Random Access Memory).

single-ended

a SCSI connector in which one wire is ground and the other wire is the signal.

split session

data from one Session split across two SCSI devices.

SRAM

Static RAM.
316

Glossary
SRQ

Service Request.

static+dynamic

a measurement that combines low sample-rate data from static sensors (such as temperature or
pressure) with dynamic data (such as vibration or acoustics).

striping

Sessions using multiple Transfer Units containing data which has N blocks on Transfer Unit 1,
M blocks on Transfer Unit 2 and so on.

system bus

a way of referring to the VXI bus not including the Local Bus.

Transfer Unit

a quantity of data transferred as a unit. A transfer unit can refer to data from either one or two
devices. Also called a TUNIT.

TTLTRG

eight lines on the VXI backplane which are available to provide synchronization between devices.
The VT2216A uses the TTLTRG lines for simple communication with other devices.

TUNIT

see Transfer Unit
317

Glossary
318

Index
A
A16 314
A16 address space 66
A24 314
A24 address space 66
A32 314
A32 address space 66
abort 110
aborting data transfer 265
access LED 55
acquisition 67 , 68
ADC 314
address 316 , 316

SCSI 22
address space 66 , 314
addressing, in SCPI 198
Agilent/HP E1430A 10 MHz Input 51
Agilent/HP E1485C VXI Signal Processor 71
assemblies

VT2216A 34

B
backing up data 239
backup 72 , 73 , 74
bit bucket 314
block diagram 52
blocksize 314 , 314
brackets 47
browser 21
bytes 111

C
cables

N2216A 34 , 39
part numbers 39

cache 314
calibration 51
cataloging a directory (LIF) 288 , 290
circuit description 52
close

tputfile 122
closing

files (LIF) 291
SCSI device 232
session 240
transfer unit 247
volumes (LIF) 286
VXIplug&play library 86

cmd 87
query int32 88
query real64 89

query string 90
code, manufacturers’ 35
command reference, SCPI

conventions 203
description 200
finding a command 201
symbols 202
syntax descriptions 203

command structure, SCPI 186 , 278
condition register

described 189
operation status 196
questionable status 194
status byte 193

configuration switch 22
constraints, session 63
copy, split session 74
copying data 239 , 285
copying data (LIF) 305
current value table 69
CVT 69 , 314

D
D16 314
D32 314
DAT diagnostics test 221
data flow 70
data management (LIF) 278
debuglevel 95 , 108
default logical address 22
deleting files (LIF) 301 , 310
description, hardware 50
device, SCSI 60
diagnostics

local bus 219 , 220
main board 217
SCSI board 218
SCSI DAT 221
SCSI devices 222
SCSI disk 223

differential-wide 314
digital recorder, external 70
disk drive

SCSI device 226
disk LED 55
disk striping 62
disk test 32 , 32
DMA 315
dynamic 317
319

Index
E
embedded computer 315
enable register

described 189
Status Byte 193

^ END
 203

End or Identify (EOI) 203
EOF, setting (LIF) 303
erase blocks, SCSI device 234
erase bypass mode, SCSI device 233
error

message 91
query 92

errors
LIF, listed 311
reading 267
SCPI, listed 271
VXIplug&play 91
VXIplug&play, listed 135

event register
described 189
standard event 195

external access 66
external digital recorder 70

F
failed LED 55
fields, sequence 65
file length (LIF) 282
file position (LIF) 293 , 296
file space (LIF) 283
find

modules 93
finished 112
front panel 55

removing 40

G
get

debuglevel 95
timeout 100

glossary 313
GPIB 315

addressing commands 198

H
help, online 21

I
id, assigning (LIF) 299
implied mnemonic 315
included with N2216A 21
Individual SCSI Devices 60
init 101
initializing libraries (LIF) 298
initializing volumes (LIF) 103 , 289 , 306
inspection 20
installing

VT2216A 20 , 22
internal device address 315
Internet Explorer 21

L
LBUS 315
LEDs 55
LIF

files 65
illustration 65
irectories 65
libraries 278
uses with VT2216A 278

LIF libraries 315
line feed character (NL) 203
Local Bus 315
local bus 67 , 68 , 68 , 71

configuring mode 269
logic level 22
reset 269 , 270

local bus diagnostics 219 , 220
localbus

reset 117
logical address 315

description 198
logical address, setting 22
logical block size

SCSI device 226
logical blocks

SCSI device 230 , 231

M
main board diagnostics 217
manufacturers’ code 35
master summary bit (MSS) 191 , 193
MAV bit 193
measurement

Measuring bit 196
memory space 315
memory, shared 66
Message Available bit 193
message, termination 203
MMEMory 60

SCSI 60
SCSIx 60
SESSion 62 , 62 , 63
TUNIT 62

mnemonic 315
model number 48
modes, SCSI device 236
module (VT2216A)

installing 22
shipping 27
storing 27
transporting 27

monitoring 68 , 69 , 315
moving files (LIF) 302 , 308
MXI 315
320

Index
N
Netscape 21
new line character (NL) 203

O
online help 21
open

playback 123
record 124
update 125

opening
SCSI devices 235
transfer unit 248

opening files (LIF) 294
operation register 65
operation status register set

condition register 254
description 196
enable register 255
event register 256
negative transition register 257
positive transition register 258

ordering parts 34
overlapped commands, processing 211 , 216

P
packing data (LIF) 300 , 309
part numbers

cables 39
parts

ordering 34
replaceable 34
table 39

playback
open 123
read aint16 113
read aint32 114
read aint32 16 115
read char 116
setup 118
start 120

plug&play library
closing 86
error descriptions 135

polling method 190
post-processing 71 , 71 , 72
pre-processing 72
primary 316
primary address 316
program message terminators 203

Q
query

form 200
of register sets 196

questionable status register set 194
condition register 260
enable register 261
event register 262
negative transition register 263

positive transition register 264

R
RAM, shared 66
read

aint16 126
aint32 127
areal64 128
char 129

reading data
session 295

reading data from files (LIF) 295
record

open 124
setup 119
start 121

recorder, external 70
register

VXI 59
register set

SCPI register set 189
register, operation 65
remove

LED board 46
removing files (LIF) 301 , 310
renaming files (LIF) 302 , 308
replaceable parts 34
request service bit (RQS) 191 , 193
reset 104

device 212
local bus 270
localbus 117

revision
query 105

S
SCPI 316

addressing 198
and sequences 142
format 186 , 278
structure 186 , 278
syntax 187 , 202
version 268

SCPI commands
overview 58 , 60

SCPI register set
how to use 189
master summary (MSS) 191
operation status 196
polling method 190
questionable status 194
request service (RQS) 191
SRQ method 190
standard event 195
status byte 193

SCSI 316
backup 74

SCSI address 22
SCSI board diagnostics 218
SCSI controller addressing 266
321

Index
SCSI device 60 , 61
calibration 227 , 228 , 229 , 229
closing 232
logical block number 230 , 231
logical block size 226 , 226
opening 235
size 231
specifying mode 236

SCSI devices diagnostics 222
SCSI disk diagnostics 223
SCSI interface test 32
secondary 316
secondary address 316
seek

tputfile 130
select code 316
self test 106 , 215
SEQuence 65
Sequence 316
sequence 63 , 65

adding operations 249
and SCPI 142
and session subsystem 144
defined 142
deleting 251
running 250
session 142
size 252
stopping 151

sequence operations 150
sequences

creating 143
serial number 48
serial poll 191 , 191
service request

described 190
enable register 191
generating 190
initiating 191
initiating SRQ 191
monitoring conditions 190

Session 316
session 61

adding transfer units 238
closing 240
constraints 63
copying 239
deleting 240
initializing 238 , 278 , 289
overview 62
reading from 170 , 171 , 175
size, in transfer units 244
split 74
writing to 162 , 163 , 164 , 165 , 166 , 167 , 168 ,

169 , 172
set

debuglevel 108
timeout 109

setting parameters
in SCPI 187

setup
playback 118
record 119

SFP (Soft Front Panel) 78
shared memory 66 , 316
Shared RAM 316
shipping module 27
single-ended 316
space character (WSP) 202
special syntactic elements 202
speed, striping 62
split session 74 , 316
splitting data 248
SRAM 316
SRQ 317

described 190
initiating 191

standard event register set 195
start

playback 120
record 121

static sensitive 34
static+dynamic 317
status byte 191 , 193
status LEDs 55
status register, resetting 259
storage space, striping 63
storing module 27
striping 317

disk 62
for speed 62
for storage space 63
illustration 63 , 64

subsystem 62
MMEMory

SCSI 60
TUNIT 62

SEQuence 65
Support 17
Support Resources 17
switch, configuration 22
synchronization, TTLTRG 66
syntax

conventions 203
message terminators 203

syntax descriptions 203
CHAR 203
STRING 203

system bus 67 , 68 , 69 , 73 , 317

T
Technical Support 17
terminating data transfer 265
test

disk 32 , 32
SCSI interface 32

timeout 100 , 109
tput

abort 110
322

Index
bytes 111
finished 112
playback read aint16 113
playback read aint32 114
playback read aint32 16 115
playback read char 116
reset localbus 117
setup playback 118
setup record 119
start playback 120
start record 121

tputfile
close 122
open playback 123
open record 124
open update 125
read aint16 126
read aint32 127
read areal64 128
read char 129
seek 130
write aint16 131
write aint32 132
write areal64 133
write char 134

Transfer Unit 317
transfer unit 62

adding to session 238
closing 247
opening 248
removing from session 240

transition registers 189
operation status register set 258
questionable status register sets 264

transporting module 27 , 27
trigger

Waiting for TRIG bit 196
troubleshooting

VT2216A 31
TTLTRG 66 , 317
TTLTRG lines

clearing 156
setting 153

TUNIT 61 , 62 , 74 , 317

U
update

open 125
utility, sequence 65

V
VME bus 73
VT1413C ADC 70
VT1432A 16-channel Input 51
VT1485C VXI Signal Processor 72
VXI

message-based modules 58
registers 59

VXI Installation Consultant 22
VXI system bus 67 , 68 , 69 , 69 , 73

VXIplug&play library
closing 86
error descriptions 135

W
What you get with VT2216A 21
write

aint16 131
aint32 132
areal64 133
char 134

writing to a file (LIF) 292 , 297
writing to a Session 297
WSP 202
323

324

	Preface
	VT2216A at a Glance
	In This Book
	Contents

	Support Resources
	Installing the VT2216A
	Installing the VT2216A
	To Inspect the VT2216A
	The VT2216A Checkist
	To Install the VT2216A
	To Install the VT2216A Software
	To Transport the Module
	To store the module

	Troubleshooting the VT2216A
	Introduction
	To Troubleshoot the VT2216A

	Replacing Assemblies
	Replaceable Parts
	To Remove the Top Cover
	To Remove the Printed Circuit Assemblies
	To Remove a Disk Drive
	To Remove the Fan
	To Remove the Front Panel
	To Reprogram the Main Assembly

	Hardware Description
	General Description
	Circuit Description
	VT2216A Front Panel Description

	Using the VT2216A
	VXI and SCPI
	The VXI Registers
	Throughput Terminology
	The VT2216A Throughput/Playback Process

	VXIplug&play Reference
	What is VXIplug&play?
	The VXIplug&play Soft Front Panel
	Using the VT2216A VXIplug&play Library
	Recording from the VXI Local Bus
	Playing Back Data from a Throughput File

	Function Reference
	Alphabetical Function Reference
	Hierarchical Function Reference
	agn2216_close
	agn2216_cmd
	agn2216_cmd_query_int32
	agn2216_cmd_query_real64
	agn2216_cmd_query_string
	agn2216_error_message
	agn2216_error_query
	agn2216_find
	agn2216_find_default_volume
	agn2216_get_debuglevel
	agn2216_get_dir_entry
	agn2216_get_first_dir_entry
	agn2216_get_timeout
	agn2216_init
	agn2216_init_volume
	agn2216_reset
	agn2216_revision_query
	agn2216_self_test
	agn2216_set_debuglevel
	agn2216_set_timeout
	agn2216_tput_abort
	agn2216_tput_bytes
	agn2216_tput_finished
	agn2216_tput_playback_read_aint16
	agn2216_tput_playback_read_aint32
	agn2216_tput_playback_read_aint32_16
	agn2216_tput_playback_read_char
	agn2216_tput_reset_localbus
	agn2216_tput_setup_playback
	agn2216_tput_setup_record
	agn2216_tput_start_playback
	agn2216_tput_start_record
	agn2216_tputfile_close
	agn2216_tputfile_open_playback
	agn2216_tputfile_open_record
	agn2216_tputfile_open_update
	agn2216_tputfile_read_aint16
	agn2216_tputfile_read_aint32
	agn2216_tputfile_read_areal64
	agn2216_tputfile_read_char
	agn2216_tputfile_seek
	agn2216_tputfile_write_aint16
	agn2216_tputfile_write_aint32
	agn2216_tputfile_write_areal64
	agn2216_tputfile_write_char

	VXIplug&play Library Errors

	Sequence Operations Reference
	Sequence Overview
	Sequence Quick Reference
	VT2216A Sequence Operations
	Do Nothing 0000
	Terminate Sequence 0001
	Pause N msec 0002
	TTLTRG Control 0003
	Execute New Sequence 0004
	New Sequence If Count 0005
	TTLTRG Arm 0006
	TTLTRG Wait 0007
	IRQ Arm 0008
	IRQ Wait 0009
	Test shared RAM and Skip 7000
	Pause N loops 000a
	LBUS Consume 1000
	LBUS Eavesdrop 1001
	LBUS Consume Pipe 1002
	LBUS Eavesdrop Pipe 1003
	LBUS Consume Continuous 1100
	LBUS Eavesdrop Continuous 1101
	LBUS Consume Pipe Continuous 1102
	LBUS Eavesdrop Pipe Continuous 1103
	LBUS Generate 2000
	LBUS Append 2001
	Throughput A16 Buff 16 - Throughput Shared RAM 3000-3012
	Throughput Dummy Bytes 3100
	Throughput Shared RAM Monitor Shared RAM - Throughput A24 Buff D32 Monitor A24 Buff 3812-3a05
	Playback A16 Buff 16 - Playback Shared RAM 4000-4012
	Playback Bit Bucket 4100
	LBUS Consume Monitor Shared RAM - LBUS Eavesdrop Pipe Monitor A24 5000-5017
	Wait Bit Set A16 - Wait Bit Clear Shared RAM 6000-6007
	Wait A16 Count16 - Wait Count Shared RAM 32 6008-600f
	Wait FIFO Empty Wait FIFO Half Empty 6010-6011
	Control A16 Reg 16 - Control Reg Shared RAM 32 6018-601f
	Dump A24 Seq Bytes - Dump Shared RAM Seq Bytes 6020-6022

	Programming Using SCPI
	Getting Started
	Using the Status Registers
	The VT2216A Registers Sets
	Addressing the VT2216A

	SCPI Command Reference
	Message-based VXI devices
	Finding the Right Command
	Command Syntax

	VT2216A SCPI Quick Reference
	VT2216A SCPI Commands
	*CLS command
	*ESE command/query
	*ESR? query
	*IDN? query
	*OPC command/query
	*RST command
	*SRE command/query
	*STB? query
	*TST? query
	*WAI command
	DIAGnostic:BOARd:MAIN? query
	DIAGnostic:BOARd:SCSI? query
	DIAGnostic:LBUS:CONSume? query
	DIAGnostic:LBUS:GENerate? query
	DIAGnostic:SCSI:DAT? query
	DIAGnostic:SCSI:DEVices? query
	DIAGnostic:SCSI:DISK? query
	LBUS:READ:BUFFer command
	LBUS:WRITe:BUFFer command
	MMEMory:SCSI[1|2|...|30]:BSIZe? query
	MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO command/query
	MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate] command
	MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? query
	MMEMory:SCSI[1|2|...|30]:CAPacity? query
	MMEMory:SCSI[1|2|...|30]:CLOSe command
	MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe] command/query
	MMEMory:SCSI[1|2|...|30]:ERASe command
	MMEMory:SCSI[1|2|...|30]:OPEN command/query
	MMEMory:SCSI[1|2|...|30]:TEMPerature? query
	MMEMory:SESSion[1|2|...|12]:ADD command
	MMEMory:SESSion[1|2|...|12]:COPY command
	MMEMory:SESSion[1|2|...|12]:DELete:ALL command
	MMEMory:SESSion[1|2|...|12]:READ:BUFFer command
	MMEMory:SESSion[1|2|...|12]:READ:FIFO command
	MMEMory:SESSion[1|2|...|12]:SEEK command
	MMEMory:SESSion[1|2|...|12]:SIZE? query
	MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer command
	MMEMory:SESSion[1|2|...|12]:WRITe:FIFO command
	MMEMory:TUNit[1|2|...|15]:CLOSe command
	MMEMory:TUNit[1|2|...|15]:OPEN command/query
	SEQuence[1|2|3|4]:ADD command
	SEQuence[1|2|3|4]:BEGin command
	SEQuence[1|2|3|4]:DELete:ALL command
	SEQuence[1|2|3|4]:SIZE? query
	SEQuence[1|2|3|4]:TRANsferred? query
	STATus:OPERation:CONDition? query
	STATus:OPERation:ENABle command/query
	STATus:OPERation[:EVENt]? query
	STATus:OPERation:NTRansition command/query
	STATus:OPERation:PTRansition command/query
	STATus:PRESet command
	STATus:QUEStionable:CONDition? query
	STATus:QUEStionable:ENABle command/query
	STATus:QUEStionable[:EVENt]? query
	STATus:QUEStionable:NTRansition command/query
	STATus:QUEStionable:PTRansition command/query
	SYSTem:ABORt command
	SYSTem:COMMunicate:SCSI[:SELF]:ADDRess command/query
	SYSTem:ERRor? query
	SYSTem:VERSion? query
	VINStrument[:CONFigure]:LBUS [:MODE] RESet|NORMal|PIPE command/query
	VINStrument:LBUS:RESet command

	Errors

	LIF Library Reference
	Getting Started
	LIF Library Quick Reference

	VT2216A LIF Functions
	e1562_allocated
	e1562_available
	e1562_block
	e1562_copy
	e1562_closeLibrary
	e1562_defaultVolume
	e1562_dirFirst
	e1562_dirInit
	e1562_dirNext
	e1562_fclose
	e1562_fflush
	e1562_fgetpos
	e1562_fopen
	e1562_fread
	e1562_fsetpos
	e1562_fwrite
	e1562_initializeLibrary
	e1562_mapModule
	e1562_pack
	e1562_remove
	e1562_rename
	e1562_setEOF

	VT2216A LIF Commands
	e1562cp
	e1562in
	e1562ls
	e1562mv
	e1562pk
	e1562rm

	LIF Library Errors

	Index

